Skip to main content
Log in

Effects of Ribbon Thickness on Structure and Soft Magnetic Properties of a High-Cu-Content FeBCuNb Nanocrystalline Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of ribbon thickness (t) on the structure and magnetic properties of a Fe82.3B13Cu1.7Nb3 alloy in melt-spun and annealed states have been investigated. Increasing the t from 15 to 23 μm changes the structure of the melt-spun ribbons from a single amorphous phase to a composite with dense α-Fe nanograins embedded in the amorphous matrix. The grain size (Dα-Fe) of the α-Fe near the free surface of the ribbon is about 6.7 nm, and it gradually decreases along the cross section toward the wheel-contacted surface. Further increasing the t to 32 μm coarsens the Dα-Fe near the free surface to 15.2 nm and aggravates the Dα-Fe ramp along the cross section. After annealing, the ribbon with t = 15 μm has relatively large α-Fe grains with Dα-Fe > 30 nm, while the thicker ribbons possessing the pre-existing nanograins form a finer nanostructure with Dα-Fe < 16 nm. The structural uniformity of the ribbon with t = 23 μm is better than that of the ribbon with t = 32 μm. The annealed ribbons with t = 23 and 32 μm possess superior soft magnetic properties to the ribbon with t = 15 μm. The ribbon with t = 23 μm exhibits a high saturation magnetic flux density of 1.68 T, low coercivity of 9.6 A/m, and high effective permeability at 1 kHz of 15,000. The ribbon with t = 32 μm has a slightly larger coercivity due to the lower structural uniformity. The formation mechanism of the fine nanostructure for the ribbons with suitable t has been discussed in terms of the competitive growth effect among the pre-existing α-Fe nanograins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

    Article  CAS  Google Scholar 

  2. Y. Yoshizawa, Mater. Sci. Forum 307, 51 (1999)

    Article  CAS  Google Scholar 

  3. Y.H. Ding, X. Liu, S.S. Zhao, Y. Long, R.C. Ye, Y.Q. Chang, F.R. Wan, Acta Metall. Sin. -Engl. Lett. 20, 327 (2007)

    Article  CAS  Google Scholar 

  4. Y.X. Geng, H.Y. Ding, D.P. Wang, Z.J. Zhang, H.B. Ju, L.H. Yu, J.H. Xu, Acta Metall. Sin. -Engl. Lett. 33, 313 (2020)

    Article  CAS  Google Scholar 

  5. M. Ohta, Y. Yoshizawa, Mater. Trans. 48, 2378 (2007)

    Article  CAS  Google Scholar 

  6. B. Zang, R. Parsons, K. Onodera, H. Kishimoto, A. Kato, A.C.Y. Liu, K. Suzuki, Scr. Mater. 132, 68 (2017)

    Article  CAS  Google Scholar 

  7. M. Ohta, Y. Yoshizawa, J. Appl. Phys. 103, 07E722 (2008)

    Article  Google Scholar 

  8. M. Ohta, Y. Yoshizawa, J. Phys. D: Appl. Phys. 44, 064004 (2011)

    Article  Google Scholar 

  9. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, Mater. Trans. 50, 204 (2009)

    Article  CAS  Google Scholar 

  10. P. Sharma, X. Zhang, Y. Zhang, A. Makino, J. Appl. Phys. 115, 17A340 (2014)

    Article  Google Scholar 

  11. T. Liu, F.C. Li, A.D. Wang, L. Xie, Q.F. He, J.H. Luan, A.N. He, X.M. Wang, C.T. Liu, Y. Yang, J. Alloys Compd. 776, 606 (2019)

    Article  CAS  Google Scholar 

  12. X.D. Fan, M.F. Jiang, T. Zhang, L. Hou, C.X. Wang, B.L. Shen, J. Non-Cryst, Solids 533, 119941 (2020)

    CAS  Google Scholar 

  13. A. Makino, T. Kubota, K. Yubuta, A. Inoue, A. Urata, H. Matsumoto, S. Yoshida, J. Appl. Phys. 109, 07A302 (2011)

    Article  Google Scholar 

  14. Y. Zhang, P. Sharma, A. Makino, IEEE Trans. Magn. 50, 1 (2014)

    Google Scholar 

  15. Y.L. Li, Z.X. Dou, X.M. Chen, K. Lv, F.S. Li, X.D. Hui, J. Alloys Compd. 844, 155767 (2020)

    Article  CAS  Google Scholar 

  16. X.J. Jia, Y.H. Li, G.Q. Xie, T.L. Qi, W. Zhang, J. Non-Cryst, Solids 481, 590 (2018)

    CAS  Google Scholar 

  17. X.J. Jia, Y.H. Li, L.C. Wu, W. Zhang, AIP Adv. 8, 056110 (2018)

    Article  Google Scholar 

  18. R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, J. Alloys Compd. 723, 408 (2017)

    Article  CAS  Google Scholar 

  19. M. Ohta, Y. Yoshizawa, J. Magn. Magn. Mater. 321, 2220 (2009)

    Article  CAS  Google Scholar 

  20. Z.X. Dou, Y.L. Li, K. Lv, T. Wang, F.S. Li, X.D. Hui, Mater. Sci. Eng. B 264, 114942 (2021)

    Article  CAS  Google Scholar 

  21. Y.H. Li, X.J. Jia, Y.Q. Xu, C.T. Chang, G.Q. Xie, W. Zhang, J. Alloys Compd. 722, 859 (2017)

    Article  CAS  Google Scholar 

  22. L.C. Wu, Y.H. Li, K. Yubuta, A.N. He, Y. Zhang, W. Zhang, J. Magn. Magn. Mater. 497, 166001 (2020)

    Article  CAS  Google Scholar 

  23. Y.H. Li, X.J. Jia, W. Zhang, Y. Zhang, G.Q. Xie, Z.Y. Qiu, J.H. Luan, Z.B. Jiao, J. Mater. Sci. Technol. 65, 171 (2021)

    Article  Google Scholar 

  24. F. Hosseini-Nasb, A. Beitollahi, M.K. Moravvej-Farshi, J. Magn. Magn. Mater. 373, 255 (2015)

    Article  CAS  Google Scholar 

  25. F.P. Wan, T. Liu, F.Y. Kong, A.D. Wang, M.Q. Tian, J.C. Song, J.H. Zhang, C.T. Chang, X.M. Wang, Mater. Res. Bull. 96, 275 (2017)

    Article  CAS  Google Scholar 

  26. D.A. Babu, B. Majumdar, R. Sarkar, D. Akhtar, V. Chandrasekaran, J. Phys. D: Appl. Phys. 41, 195002 (2008)

    Article  Google Scholar 

  27. L.P. Duan, K. Wang, E.G. Wang, P. Jia, Acta Metall. Sin. -Engl. Lett. (2021). https://doi.org/10.1007/s40195-021-01206-4

    Article  Google Scholar 

  28. Z. Xiang, A.D. Wang, C.L. Zhao, H. Men, X.M. Wang, C.T. Chang, D. Pan, J. Alloys Compd. 622, 1000 (2015)

    Article  CAS  Google Scholar 

  29. P. Sharma, X. Zhang, Y. Zhang, A. Makino, Scr. Mater. 95, 3 (2015)

    Article  CAS  Google Scholar 

  30. Y. Zhang, P. Sharma, A. Makino, J. Alloys Compd. 709, 663 (2017)

    Article  CAS  Google Scholar 

  31. E. Lopatina, I. Soldatov, V. Budinsky, M. Marsilius, L. Schultz, G. Herzer, R. Schäfer, Acta Mater. 96, 10 (2015)

    Article  CAS  Google Scholar 

  32. G. Herzer, IEEE Trans. Magn. 26, 1397 (1990)

    Article  CAS  Google Scholar 

  33. A. Hernando, M. Vázquez, T. Kulik, C. Prados, Phys. Rev. B 51, 3581 (1995)

    Article  CAS  Google Scholar 

  34. N. Murillo, J. González, J. Magn. Magn. Mater. 218, 53 (2000)

    Article  CAS  Google Scholar 

  35. K. Suzuki, N. Ito, J.S. Garitaonandia, J.D. Cashion, G. Herzer, J. Non-Cryst, Solids 354, 5089 (2008)

    CAS  Google Scholar 

  36. T. Bitoh, A. Makino, A. Inoue, T. Masumoto, Mater. Trans. 44, 2011 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871039, 51771039 and 51571047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Hui Li or Wei Zhang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, LC., Li, YH., Jia, XJ. et al. Effects of Ribbon Thickness on Structure and Soft Magnetic Properties of a High-Cu-Content FeBCuNb Nanocrystalline Alloy. Acta Metall. Sin. (Engl. Lett.) 35, 235–242 (2022). https://doi.org/10.1007/s40195-021-01244-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01244-y

Keywords

Navigation