Skip to main content
Log in

Oxidation Behavior of K4750 Alloy at Temperatures Between 750 °C and 1000 °C

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

This study investigated the oxidation behavior of a new casting Ni-based superalloy K4750 at 750 °C-1000 °C in air for 100 h-1000 h by isothermal oxidation tests. The oxidation-kinetic curves were plotted by the static discontinuous weight gain method. Observation and identification of oxidation products were conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron probe micro-analysis (EPMA) and X-ray diffraction (XRD). X-ray photoelectron spectrometer (XPS) was also used to analyze the chemical state of elements and the distribution in depth. The results showed that the oxidation-kinetic curves of K4750 alloy basically obeyed the parabolic law. The average oxidation rate below 900 °C was less than 0.1 g/m2·h which meant the alloy was at a complete anti-oxidation grade, and the alloy was at an anti-oxidation grade at 1000 °C. The predominant surface oxide was Cr2O3, and a double layer structure of the oxide scale was observed at all tested temperatures as time increased. The outer oxide layer contained continuous Cr2O3 and a small amount of oxides mixed TiO2 and NiCr2O4, while the inner oxide layer was composed with Al2O3. The oxidation process could be interpreted by the competitive oxidation of different elements. The diffusion rate of Ti through Cr2O3 layer increased with increasing temperature, and thus the generation of TiO2 was advantageous. The dispersed TiO2 reaching a certain amount destroyed the continuity of the surface oxide layer, which accounted for the reduction of oxidation resistance of K4750 alloy at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, UK, 2008).

    Google Scholar 

  2. J.C. Williams, E.A. Srarke, Acta Metall. Sin. -Engl. Lett. 51, 5775 (2003)

    CAS  Google Scholar 

  3. Q.Y. Huang, H.K. Li, Superalloys (Metallurgical Industry Press, Beijing, 2000), pp. 107–109

    Google Scholar 

  4. T.M. Pollock, S. Tin, J. Propuls. Power. 22, 361 (2006)

    Article  CAS  Google Scholar 

  5. M.Q. Ou, Y.C. Ma, W.W. Xing, X.C. Hao, B. Chen, L.L. Ding, K. Liu, J. Mater. Sci. Technol. 35, 1270 (2019)

    Article  Google Scholar 

  6. M.Q. Ou, Dissertation, University of Science and Technology of China, 2018

  7. Y.H. Liu, M.D. Kang, Y. Wu, M.M. Wang, H.Y. Gao, J. Wang, Mater. Charact. 132, 175 (2017)

    Article  CAS  Google Scholar 

  8. H.J. Zhang, C. Li, Q.Y. Guo, Z.Q. Ma, Y. Huang, H.J. Li, Y.C. Liu, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 722, 136 (2018)

    Article  CAS  Google Scholar 

  9. M. Abedini, M.R. Jahangiri, P. Karimi, Oxid. Met. 90, 469 (2018)

    Article  CAS  Google Scholar 

  10. M.Q. Ou, Y.C. Ma, H.L. Ge, J. Alloy Compd. 735, 193 (2018)

    Article  CAS  Google Scholar 

  11. J.H. Chen, P.M. Rogers, J.A. Little, Oxid. Met. 47, 381 (1997)

    Article  CAS  Google Scholar 

  12. S. Seal, S.C. Kuiry, L.A. Bracho, Oxid. Met. 57, 297 (2002)

    Article  CAS  Google Scholar 

  13. Y. Li, H.B. Shang, J.T. Guo, C. Yuan, H.C. Yang, Acta Metall. Sin. 39, 749 (2003)

    CAS  Google Scholar 

  14. S.Q. Zhao, J.X. Dong, M.C. Zhang, X.S. Xie, Rare Metal Mat. Eng. 34, 208 (2005)

    CAS  Google Scholar 

  15. X. Wei, L.H. Zhao, Y. Tan, X.G. Y, S. Shi, Q.F. You, Mater. Mech. Eng. 42, 5 (2018)

  16. Y. Zhao, G.X. Yang, C. Yuan, J.T. Guo, C.S. Liu, Corros. Sci. Prot. Technol. 19, 1 (2007)

    Google Scholar 

  17. M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K.W. Grips, Appl. Surf. Sci. 263, 597 (2012)

    Article  CAS  Google Scholar 

  18. D.B. Lee, J. Korean Inst. Surf. Eng. 44, 196 (2011)

    Article  CAS  Google Scholar 

  19. L.H. Zhao, Y. Tan, S. Shi, X.P. Zhang, S.Q. Niu, Q.F. You, Y.N. Wang, Vacuum 170, 108979 (2019)

    Article  CAS  Google Scholar 

  20. A. Duval, F. Miserque, M. Tabarant, J.P. Nogier, A. Gédéon, Oxid. Met. 74, 215 (2010)

    Article  CAS  Google Scholar 

  21. S.J. Park, S.M. Seo, Y.S. Yoo, H.W. Jeong, H. Jang, Corros. Sci. 90, 305 (2015)

    Article  CAS  Google Scholar 

  22. M. Abbasi, D.I. Kim, J.H. Shim, W.S. Jung, J. Alloys Compd. 658, 210 (2016)

    Article  CAS  Google Scholar 

  23. X. Gong, R.R. Chen, H.Z. Fang, H.S. Ding, J.J. Guo, Y.Q. Su, H.Z. Fu, Corros. Sci. 131, 376 (2017)

    Article  Google Scholar 

  24. T. Cui, J.Q. Wang, X.X. Wang, W.H. Wang, Z.X. Wang, H.C. Yang, Corros. Sci. Prot. Technol. 16, 192 (2004)

    CAS  Google Scholar 

  25. Y. Chen, Dissertation, Huazhong University of Science and Technology, 2014

  26. J. Liao, Dissertation, Dalian University of Technology, 2014

  27. L. Qin, Y. Pei, S. Li, X. Zhao, S. Gong, H. Xu, Corros. Sci. 129, 192 (2017)

    Article  CAS  Google Scholar 

  28. D. Kim, C. Jang, W.S. Ryu, Oxid Met. 71, 271 (2009)

    Article  CAS  Google Scholar 

  29. C.S. Wang, L.L. Guo, L.Y. Tang, R.C. Zhou, J.T. Guo, L.Z. Zhou, Acta. Metall. Sin. 55, 893 (2019)

    CAS  Google Scholar 

  30. S. Gao, J.S. Hou, F. Yang, C.S. Wang, L.Z. Zhou, Rare. Metal. Mat. Eng. 48, 960 (2019)

    Google Scholar 

  31. J. Brenneman, J. Wei, Z. Sun, L. Liu, G. Zou, Y. Zhou, Corros. Sci. 100, 267 (2015)

    Article  CAS  Google Scholar 

  32. Q. Teng, S. Li, P.J. Xue, J. Tian, Q.S. Wei, Y.S. Shi, Chin. J. Nonferrous. Met. 029, 1417 (2019)

    Google Scholar 

  33. C.M. Xu, J.T. Guo, Acta Metall. Sin. 38, 673 (2002)

    CAS  Google Scholar 

  34. Y. Li, Dissertation, Northeastern University, 2004

  35. S. Zhang, Q. Wang, X.S. Zhao, C.H. Zhang, J. Shenyang Technol. U. 32, 136 (2010)

    Google Scholar 

  36. C.S. Giggins, F.S. Pettit, Metall. Trans. B 1, 1088 (1970)

    Google Scholar 

  37. C.X. Wu, Dissertation, Xiangtan University, 2013

  38. J. Wang, H. Xue, Y. Wang, Rare Met. 1–10(2020) DOI: https://doi.org/10.1007/s12598-020-01513-2

  39. Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27, 1179 (2020)

    Article  CAS  Google Scholar 

  40. S.C. Duan, X. Shi, M.T. Mao, W.S. Yang, S.W. Han, H.J. Guo, J. Guo, Sci. Rep. 08, 5232 (2018)

    Article  Google Scholar 

  41. D.R. Sigler, Oxid. Met. 46, 335 (1996)

    Article  CAS  Google Scholar 

  42. F. Abe, H. Araki, H. Yoshida, M. Okada, Oxid. Met. 27, 21 (1987)

    Article  CAS  Google Scholar 

  43. H. Nagai, M. Okabayashi, Trans. Jpn. Inst. Met. 22, 691 (1981)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Qiong Ou or Ying-Che Ma.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YL., Hou, KL., Ou, MQ. et al. Oxidation Behavior of K4750 Alloy at Temperatures Between 750 °C and 1000 °C. Acta Metall. Sin. (Engl. Lett.) 34, 1657–1668 (2021). https://doi.org/10.1007/s40195-021-01235-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01235-z

Keywords

Navigation