Skip to main content
Log in

Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Nuclear grade 304 stainless steel was irradiated by 3.5 MeV Fe ions, with fluxes of 3.05E+15 ions/cm2 and 1.55E+16 ions/cm2. Irradiation effects were studied by positron annihilation spectroscopy (PAS), transmission electron microscope (TEM) and nanoindentation techniques. PAS results showed that different types of defects were produced after irradiation and that there was significant variance in defects formed when the samples were subjected to different irradiation doses. TEM characterization showed that the irradiation-induced dislocation loops enlarged in average size, but decreased in number density at higher irradiation doses. Nanoindentation test showed obvious irradiation hardening phenomenon, which was in good agreement with the PAS and TEM results. Irradiation hardening effect increased with an increase in irradiation dose and saturation occurred with an increase in irradiation dose from 3.2 to 16 dpa. Further statistical analysis showed that barrier strength of the Frank loop depends on the loop size and density produced by the ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.M. Tian, Y.J. Ai, S.M. Li, N. Du, C. Ye, Acta Metall. -Engl. Lett. 28, 430 (2015)

    Article  CAS  Google Scholar 

  2. S.J. Zinkle, G.S. Was, Acta Mater. 61, 735 (2013)

    Article  CAS  Google Scholar 

  3. W.C. Dong, D.B. Gao, S.P. Lu, Acta Metall. -Engl. Lett. 32, 618 (2018)

    Article  Google Scholar 

  4. M.N. Gussev, E. Cakmak, K.G. Field, J. Nucl. Mater. 504, 221 (2018)

    Article  CAS  Google Scholar 

  5. G.S. Was, S.M. Bruemmer, J. Nucl. Mater. 216, 326 (1994)

    Article  CAS  Google Scholar 

  6. A.B. Du, W. Feng, H.L. Ma, T. Liang, D.Q. Yuan, P. Fan, Q.L. Zhang, C. Huang, Acta Metall. -Engl. Lett. 30, 1049 (2017)

    Article  CAS  Google Scholar 

  7. S.J. Zinkle, Phys. Plasmas 12, 058101 (2005)

    Article  Google Scholar 

  8. G.S. Was, J.T. Busby, Philos. Mag. 85, 443 (2006)

    Article  Google Scholar 

  9. P. Scott, J. Nucl. Mater. 211, 101 (1994)

    Article  CAS  Google Scholar 

  10. Z. Jiao, G.S. Was, J. Nucl. Mater. 382, 203 (2008)

    Article  CAS  Google Scholar 

  11. P.L. Andresen, M.M. Morra, J. Nucl. Mater. 383, 97 (2008)

    Article  CAS  Google Scholar 

  12. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Scr. Mater. 88, 33 (2014)

    Article  CAS  Google Scholar 

  13. G.S. Was, J. Mater. Res. 30, 1158 (2015)

    Article  CAS  Google Scholar 

  14. R. Kasada, S. Konishi, K. Yabuuchi, S. Nogami, M. Ando, D. Hamaguchi, H. Tanigawa, Fusion Eng. Des. 89, 1637 (2014)

    Article  CAS  Google Scholar 

  15. J. Gupta, J. Hure, B. Tanguy, L. Laffont, M.C. Lafont, E. Andrieu, J. Nucl. Mater. 476, 82 (2016)

    Article  CAS  Google Scholar 

  16. G. S. Was, R. S. Averback, in Comprehensive Nuclear Materials (Elsevier Ltd, 2012), pp. 195.

  17. Z.J. Jiao, G. Was, T. Miura, K. Fukuya, J. Nucl. Mater. 452, 328 (2014)

    Article  CAS  Google Scholar 

  18. C.D. Hardie, S.G. Roberts, A.J. Bushby, J. Nucl. Mater. 462, 391 (2015)

    Article  CAS  Google Scholar 

  19. P. Hosemann, D. Kiener, Y.Q. Wang, S.A. Maloy, J. Nucl. Mater. 425, 136 (2012)

    Article  CAS  Google Scholar 

  20. S. Dannefaer, G.W. Dean, D.P. Kerr, B.G. Hogg, Phys. Rev. B 14, 2709 (1976)

    Article  CAS  Google Scholar 

  21. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)

    Article  CAS  Google Scholar 

  22. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013)

    Article  CAS  Google Scholar 

  23. S.J. Zinkle, L.L. Snead, Scr. Mater. 143, 154 (2018)

    Article  CAS  Google Scholar 

  24. H.P. Zhu, Z.G. Wang, X. Gao, M.H. Cui, B.S. Li, J.R. Sun, C.F. Yao, K.F. Wei, T.L. Shen, L.L. Pang, Y.B. Zhu, Y.F. Li, J. Wang, P. Song, P. Zhang, X.Z. Cao, Nucl. Instrum. Methods Phys. Res. Sect. B 344, 5 (2015)

    Article  CAS  Google Scholar 

  25. C. Pokor, Y. Brechet, P. Dubuisson, J.P. Massoud, A. Barbu, J. Nucl. Mater. 326, 19 (2004)

    Article  CAS  Google Scholar 

  26. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (2011)

    Article  Google Scholar 

  27. J. Algers, P. Sperr, W. Egger, G. Kögel, F.H.J. Maurer, Phys. Rev. B 67, 125404 (2003)

    Article  Google Scholar 

  28. A.P. Mills, R.J. Wilson, Phys. Rev. A 26, 490 (1982)

    Article  CAS  Google Scholar 

  29. J. Mäkinen, A. Vehanen, P. Hautojärvi, H. Huomo, J. Lahtinen, R.M. Nieminen, S. Valkealahti, Surf Sci. 175, 385 (1986)

    Article  Google Scholar 

  30. D.T. Britton, P.C. Riceevans, J.H. Evans, Phil. Mag. Lett. 57, 165 (1988)

    Article  Google Scholar 

  31. H. Zhu, Z.G. Wang, M.H. Cui, B.S. Li, X. Gao, J.R. Sun, C.F. Yao, K.F. Wei, T.L. Shen, L.L. Pang, Y.B. Zhu, Y.F. Li, J. Wang, E.Q. Xie, Appl. Surf. Sci. 326, 1 (2015)

    Article  CAS  Google Scholar 

  32. Q. Xu, K. Sato, X.Z. Cao, P. Zhang, B.Y. Wang, T. Yoshiie, H. Watanabe, N. Yoshida, Nucl. Instrum. Methods Phys. Res. Sect. B 315, 146 (2013)

    Article  CAS  Google Scholar 

  33. X.B. Liu, R.S. Wang, J. Jiang, Y.C. Wu, C.H. Zhang, A. Ren, C.L. Xu, W.J. Qian, J. Nucl. Mater. 451, 249 (2014)

    Article  CAS  Google Scholar 

  34. P.J. Maziasz, J. Nucl. Mater. 205, 118 (1993)

    Article  CAS  Google Scholar 

  35. D.J. Edwards, E.P. Simonen, S.M. Bruemmer, J. Nucl. Mater. 317, 13 (2003)

    Article  CAS  Google Scholar 

  36. Z.C. Zheng, Y.X. Yu, W.P. Zhang, Z.Y. Shen, F.F. Luo, L.P. Guo, Y.Y. Ren, R. Tang, Acta Metall. -Engl. Lett. 30, 89 (2016)

    Article  Google Scholar 

  37. B.H. Sencer, G.M. Bond, M.L. Hamilton, F.A. Garner, S.A. Maloy, W.F. Sommer, J. Nucl. Mater. 296, 112 (2001)

    Article  CAS  Google Scholar 

  38. J. Malaplate, B. Michaut, A.R. Laborne, T. Jourdan, F. Dalle, J. Ribis, B. Radiguet, F. Sefta, B. Decamps, J. Nucl. Mater. 517, 201 (2019)

    Article  CAS  Google Scholar 

  39. E.H. Lee, Y. Lee, W.C. Oliver, L.K. Mansur, J. Mater. Res. 8, 377 (2011)

    Article  CAS  Google Scholar 

  40. K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, J. Nucl. Mater. 446, 142 (2014)

    Article  CAS  Google Scholar 

  41. C.D. Hardie, S.G. Roberts, J. Nucl. Mater. 433, 174 (2013)

    Article  CAS  Google Scholar 

  42. W.D. Nix, H.J. Gao, J. Mech. Phys. Solids 46, 411 (1998)

    Article  CAS  Google Scholar 

  43. R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, Fusion Eng. Des. 86, 2658 (2011)

    Article  CAS  Google Scholar 

  44. A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, P. Hosemann, J. Nucl. Mater. 458, 70 (2015)

    Article  CAS  Google Scholar 

  45. J.T. Busby, M.C. Hash, G.S. Was, J. Nucl. Mater. 336, 267 (2005)

    Article  CAS  Google Scholar 

  46. C. Pokor, Y. Brechet, P. Dubuisson, J.P. Massoud, X. Averty, J. Nucl. Mater. 326, 30 (2004)

    Article  CAS  Google Scholar 

  47. A. K. Seeger, Report No. A/CONF.15/P/998, 1959.

  48. A.S. Rao, Nucl. Eng. Des. 269, 78 (2014)

    Article  CAS  Google Scholar 

  49. O. El-Atwani, J.S. Weaver, E. Esquivel, M. Efe, M.R. Chancey, Y.Q. Wang, S.A. Maloy, N. Mara, J. Nucl. Mater. 509, 276 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation (No. 51771211); the National Key Research and Development Program of China (Nos. 2016YFE0105200 and 2017YFB0702100); the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDY-SSWJSC012); the Key Program of the Chinese Academy of Sciences (No. ZDRW-CN-2017-1). The authors would like to thank to all the staff members of 320 kV High-voltage Experimental Platform in Lanzhou and experiment members of Institute of High Energy Physics, Chinese Academy of Sciences in Beijing for their close cooperation and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Zhang, Z., Wang, J. et al. Effects of MeV Fe Ions Irradiation on the Microstructure and Property of Nuclear Grade 304 Stainless Steel: Characterized by Positron Annihilation Spectroscopy, Transmission Electron Microscope and Nanoindentation. Acta Metall. Sin. (Engl. Lett.) 34, 1695–1703 (2021). https://doi.org/10.1007/s40195-021-01232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01232-2

Keywords

Navigation