Skip to main content
Log in

A Review of Self-healing Metals: Fundamentals, Design Principles and Performance

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Self-healing metals possess the capability to autonomously repair structural damage during service. While self-healing concepts remain challenging to be realized in metals and metallic systems due to the small atomic volume of the mobile atoms, the slow diffusion unless at high temperatures and the strong isotropic metallic bonds, the scientific interest has increased sharply and promising progress is obtained. This article provides a comprehensive and updated review on the developments and limitations associated with the various modes of potentially healable damage induced in metals and alloys, i.e., stress-induced damage, irradiation-induced damage in bulk materials and contact damage in corrosion protective coatings. The spontaneous intrinsic healing mechanisms not requiring external assistance other than the material operating at the right temperature and an assisted healing mechanism with external intervention are reviewed. Promising strategies to achieve self-healing in metals are identified. Finally, we give some prospects for future research directions in self-healing metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Reprinted with permission from Refs. [27, 30, 32]

Fig. 4

Reprinted from Ref. [33] with permission from Elsevier

Fig. 5

Reprinted with permission from Ref. [47]

Fig. 6

Reprinted with permission from Ref. [52]

Fig. 7

Reprinted with permission from Ref. [54]

Fig. 8

Reproduced with permission from Ref. [68]. Copyright (2015) American Chemical Society

Fig. 9

Reprinted from Ref. [71] with permission from Elsevier

Fig. 10

Reprinted from Refs. [73, 74] with permission from Elsevier

Similar content being viewed by others

References

  1. S. Zwaag, Self-healing Materials (Springer, Dordrecht, 2008)

    Google Scholar 

  2. S.R. White, N. Sottos, P. Geubelle, J. Moore, M.R. Kessler, S. Sriram, E. Brown, S. Viswanathan, Nature 409, 794 (2001)

    CAS  Google Scholar 

  3. Y. Yang, J. He, Q. Li, L. Gao, J. Hu, R. Zeng, J. Qin, S.X. Wang, Q. Wang, Nat. Nanotechnol. 14, 151 (2019)

    CAS  Google Scholar 

  4. V. Wiktor, H.M. Jonkers, Cem. Concr. Compos. 33, 763 (2011)

    CAS  Google Scholar 

  5. W.G. Sloof, R. Pei, S.A. McDonald, J.L. Fife, L. Shen, L. Boatemaa, A.S. Farle, K. Yan, X. Zhang, S. van der Zwaag, Sci. Rep. 6, 23040 (2016)

    CAS  Google Scholar 

  6. M.D. Hager, P. Greil, C. Leyens, S. van der Zwaag, U.S. Schubert, Adv. Mater. 22, 5424 (2010)

    CAS  Google Scholar 

  7. N. van Dijk, S. van der Zwaag, Adv. Mater. Interfaces 5, 1800226 (2018)

    Google Scholar 

  8. B. Grabowski, C.C. Tasan, Self-healing Metals (Springer, Berlin, 2016), pp. 387–407

    Google Scholar 

  9. S. van der Zwaag, Self Healing Materials: An Alternative to 20 Centuries of Materials Science (Springer, Dordrecht, 2008)

    Google Scholar 

  10. S. van der Zwaag, E. Brinkman, in Self Healing Materials: Pioneering Research in the Netherlands, (Netherlands, 2015)

  11. S. Zhang, H. Fang, M. Gramsma, C. Kwakernaak, W. Sloof, F. Tichelaar, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, Metall. Mater. Trans. A 47, 4831 (2016)

    CAS  Google Scholar 

  12. R.N. Lumley, A.J. Morton, I.J. Polmear, Acta Mater. 50, 3597 (2002)

    CAS  Google Scholar 

  13. R. Lumley, R.G. O’Donnell, I.J. Polmear, J.R. Griffiths, Mater. Mater. Forum 29, 256 (2005)

    CAS  Google Scholar 

  14. M. Mahdavi Shahri, R.C. Alderliesten, S. van der Zwaag, H. Schut, Advanced Materials Research (Trans Tech Publ, Zürich, 2014)

    Google Scholar 

  15. S. Hautakangas, H. Schut, N.H. van Dijk, P.E.J. Rivera Díaz del Castillo, S. van der Zwaag, Scr. Mater. 58, 719 (2008)

    CAS  Google Scholar 

  16. A. Michalcová, I. Marek, A. Knaislová, Z. Sofer, D. Vojtěch, Materials (Basel) 11, 199 (2018)

    Google Scholar 

  17. K. Laha, J. Kyono, S. Kishimoto, N. Shinya, Scr. Mater. 52, 675 (2005)

    CAS  Google Scholar 

  18. K. Laha, J. Kyono, N. Shinya, Scr. Mater. 56, 915 (2007)

    CAS  Google Scholar 

  19. K. Laha, J. Kyono, N. Shinya, Metall. Mater. Trans. A 43, 1187 (2012)

    CAS  Google Scholar 

  20. K. Laha, J. Kyono, N. Shinya, Philos. Mag. 87, 2483 (2007)

    CAS  Google Scholar 

  21. N. Shinya, J. Kyono, K. Laha, J. Intell. Mater. Syst. Struct. 17, 1127 (2006)

    CAS  Google Scholar 

  22. K. Laha, J. Kyono, T. Sasaki, S. Kishimoto, N. Shinya, Metall. Mater. Trans. A 36, 399 (2005)

    Google Scholar 

  23. S.K. Ghosh, Self-healing Materials: Fundamentals, Design Strategies, and Applications. (Wiley Online Library, 2009). https://www.wiley.com/en-us/9783527318292. Accessed August 2009

  24. S. He, N. van Dijk, H. Schut, E. Peekstok, S. van der Zwaag, Phys. Rev. B 81, 094103 (2010)

    Google Scholar 

  25. S. He, N. van Dijk, M. Paladugu, H. Schut, J. Kohlbrecher, F. Tichelaar, S. van der Zwaag, Phys. Rev. B 82, 174111 (2010)

    Google Scholar 

  26. C. Versteylen, N. van Dijk, M. Sluiter, Phys. Rev. B 96, 094105 (2017)

    Google Scholar 

  27. S. Zhang, J. Kohlbrecher, F. Tichelaar, G. Langelaan, E. Brück, S. van der Zwaag, N. van Dijk, Acta Mater. 61, 7009 (2013)

    CAS  Google Scholar 

  28. S. Zhang, H. Schut, J. Čížek, F. Tichelaar, E. Brück, S. van der Zwaag, N. van Dijk, J. Mater. Sci. 49, 2509 (2014)

    CAS  Google Scholar 

  29. S. Zhang, G. Langelaan, J. Brouwer, W. Sloof, E. Brück, S. van der Zwaag, N. van Dijk, J. Alloys Compd. 584, 425 (2014)

    CAS  Google Scholar 

  30. S. Zhang, C. Kwakernaak, W. Sloof, E. Brück, S. van der Zwaag, N. van Dijk, Adv. Eng. Mater. 17, 598 (2015)

    CAS  Google Scholar 

  31. S. Zhang, C. Kwakernaak, F. Tichelaar, W. Sloof, M. Kuzmina, M. Herbig, D. Raabe, E. Brück, S. van der Zwaag, N. van Dijk, Metall. Mater. Trans. A 46, 5656 (2015)

    CAS  Google Scholar 

  32. H. Fang, C. Versteylen, S. Zhang, Y. Yang, P. Cloetens, D. Ngan-Tillard, E. Brück, S. van der Zwaag, N. van Dijk, Acta Mater. 121, 352 (2016)

    CAS  Google Scholar 

  33. H. Fang, N. Szymanski, C. Versteylen, P. Cloetens, C. Kwakernaak, W. Sloof, F. Tichelaar, S. Balachandran, M. Herbig, E. Brück, Acta Mater. 166, 531 (2019)

    CAS  Google Scholar 

  34. D. Wei, J. Han, K. Tieu, Z. Jiang, Scr. Mater. 51, 583 (2004)

    CAS  Google Scholar 

  35. D. Wei, Z. Jiang, J. Han, Comput. Mater. Sci. 69, 270 (2013)

    CAS  Google Scholar 

  36. Q. Fang, J. Li, H. Luo, J. Du, B. Liu, J. Alloys Compd. 710, 281 (2017)

    CAS  Google Scholar 

  37. J. Li, Q. Fang, B. Liu, Y. Liu, Y. Liu, P. Wen, Acta Mater. 95, 291 (2015)

    CAS  Google Scholar 

  38. E.G. Karpov, M.V. Grankin, M. Liu, M. Ariyan, J. Mech. Phys. Solids 60, 250 (2012)

    CAS  Google Scholar 

  39. M. Meraj, S. Pal, Appl. Phys. A 123, 138 (2017)

    Google Scholar 

  40. C. Versteylen, N. Szymański, M. Sluiter, N. van Dijk, Philos. Mag. 98, 864 (2018)

    CAS  Google Scholar 

  41. C. Versteylen, M. Sluiter, N. van Dijk, J. Mater. Sci. 53, 14758 (2018)

    CAS  Google Scholar 

  42. B.S. Files, PhD thesis, Design of a Biomimetic Self-Healing Superalloy Composite, Northwestern University, 1997

  43. M.V. Manuel, PhD thesis, Design of a biomimetic self-healing alloy composite, Northwestern University, 2007

  44. M.V.M. M. C. Wright, and T. Wallace, Fatigue Resistance of Liquid-Assisted Self-Repairing Aluminum Alloys Reinforced with Shape Memory Alloys, Report by National Aeronautics and Space Administration (2013)

  45. P.K. Rohatgi, Mater. Sci. Eng. A 619, 73 (2014)

    CAS  Google Scholar 

  46. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, Mater. Sci. Eng. A 620, 85 (2015)

    Google Scholar 

  47. C.R. Fisher, H.B. Henderson, M.S. Kesler, P. Zhu, G.E. Bean, M.C. Wright, J.A. Newman, L.C. Brinson, O. Figueroa, M.V. Manuel, Appl. Mater. Today 13, 64 (2018)

    Google Scholar 

  48. P. Zhu, Z. Cui, M.S. Kesler, J.A. Newman, M.V. Manuel, M.C. Wright, L.C. Brinson, Mech. Mater. 103, 1 (2016)

    Google Scholar 

  49. O. Kovalenko, C. Brandl, L. Klinger, E. Rabkin, Adv. Sci. 4, 1700159 (2017)

    Google Scholar 

  50. S.D.V.S.J.G.A.S.H.G.R. Spolenak, Adv. Mater. Technol. 6, 1800468 (2018)

    Google Scholar 

  51. J. Kim, H.J. Kim, S.H. Hong, H.J. Park, Y.S. Kim, Y.J. Hwang, Y.B. Jeong, J.Y. Park, J.M. Park, B. Sarac, W.M. Wang, J. Eckert, K.B. Kim, Sci. Rep. 8, 2120 (2018)

    Google Scholar 

  52. X. Zheng, Y.N. Shi, K. Lu, Mater. Sci. Eng. A 561, 52 (2013)

    CAS  Google Scholar 

  53. A.M. Abdelkader, S.J. Garcia, S. van der Zwaag, Ceramics Int. 39, 3429 (2013)

    CAS  Google Scholar 

  54. Z. Hsain, J.H. Pikul, Adv. Funct. Mater. 29, 1905631 (2019)

    CAS  Google Scholar 

  55. H. Song, Zj Wang, Xd He, J. Duan, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  56. H. Song, Z.J. Wang, Mater. Sci. Eng. A 490, 1 (2008)

    Google Scholar 

  57. J. Tao, B.K. Liew, J.F. Chen, N.W. Cheung, C. Hu, Microelectron. Reliab. 38, 295 (1998)

    Google Scholar 

  58. W. Yao, C. Basaran, Comput. Mater. Sci. 71, 76 (2013)

    CAS  Google Scholar 

  59. X.M. Luo, B. Zhang, G.P. Zhang, J. Appl. Phys. 116, 103509 (2014)

    Google Scholar 

  60. A.W. Hunt, S.P. Riege, J.A. Prybyla, Appl. Phys. Lett. 70, 2541 (1997)

    CAS  Google Scholar 

  61. O.G. Barbara Putz, M.J. Cordill, Mater. Res. Lett. 4, 43 (2016)

    Google Scholar 

  62. G. Robert Odette, S.J. Zinkle, Structural Alloys for Nuclear Energy Applications (Elsevier, Amsterdam, 2019). https://doi.org/10.1016/C2011-0-07772-4

    Book  Google Scholar 

  63. X.M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010)

    CAS  Google Scholar 

  64. V. Borovikov, X.Z. Tang, D. Perez, X.M. Bai, B.P. Uberuaga, A.F. Voter, Nucl. Fusion 53, 063001 (2013)

    Google Scholar 

  65. G. Xu, M. Demkowicz, Phys. Rev. Lett. 111, 145501 (2013)

    CAS  Google Scholar 

  66. X. Li, W. Liu, Y. Xu, C.S. Liu, B.C. Pan, Y. Liang, Q.F. Fang, J.L. Chen, G.N. Luo, G.H. Lu, Z. Wang, Acta Mater. 109, 115 (2016)

    CAS  Google Scholar 

  67. G. Ackland, Science 327, 1587 (2010)

    CAS  Google Scholar 

  68. J. Li, K. Yu, Y. Chen, M. Song, H. Wang, M. Kirk, M. Li, X. Zhang, Nano Lett. 15, 2922 (2015)

    CAS  Google Scholar 

  69. K.P. So, D. Chen, A. Kushima, M. Li, S. Kim, Y. Yang, Z. Wang, J.G. Park, Y.H. Lee, R.I. Gonzalez, M. Kiwi, E.M. Bringa, L. Shao, J. Li, Nano Energy 22, 319 (2016)

    CAS  Google Scholar 

  70. L. Yang, H.Y. Li, P.W. Wang, S.Y. Wu, G.Q. Guo, B. Liao, Q.L. Guo, X.Q. Fan, P. Huang, H.B. Lou, F.M. Guo, Q.S. Zeng, T. Sun, Y. Ren, L.Y. Chen, Sci. Rep. 7, 16739 (2017)

    CAS  Google Scholar 

  71. F. Xiong, M.F. Li, B. Malomo, L. Yang, Acta Mater. 182, 18 (2020)

    CAS  Google Scholar 

  72. F. Xiong, Mf Li, L. Yang, Comput. Mater. Sci. 176, 109532 (2020)

    CAS  Google Scholar 

  73. S. Zhang, J. Cizek, Z. Yao, M. Oleksandr, X. Kong, C. Liu, N. van Dijk, S. van der Zwaag, J. Alloys Compd. 817, 152765 (2019)

  74. S. Zhang, Z. Yao, Z. Zhang, M. Oleksandr, Appl. Surf. Sci. 504, 144383 (2020)

    Google Scholar 

  75. S. Zhang, Z. Yao, Z. Zhang, M. Oleksandr, F. Chen, X. Cao, P. Zhang, N. van Dijk, S. van der Zwaag, Nucl. Instrum. Methods Phys. Res. Sect. B 463, 69 (2020)

    CAS  Google Scholar 

  76. F. Zhang, P. Ju, M. Pan, D. Zhang, Y. Huang, G. Li, X. Li, Corros. Sci. 144, 74 (2018)

    Google Scholar 

  77. S. Alexandridou, C. Kiparissides, J. Fransaer, J.P. Celis, Surf. Coat. Technol. 71, 267 (1995)

    CAS  Google Scholar 

  78. Z.H. Xie, S. Shan, J. Mater. Sci. 53, 33755 (2018)

    Google Scholar 

  79. WpLLqZ Xiuqing, X. Yanhong Guo, Int. J. Miner. Metall. Mater. 18, 377 (2011)

    Google Scholar 

  80. P.E. Leser, PhD thesis, Mitigation of Crack Damage in Metallic Materials, National Aeronautics and Space Administration, 2014

  81. G.B. Yang, S.T. Chai, X.J. Xiong, S.M. Zhang, L.G. Yu, P.Y. Zhang, Trans. Nonferrous Met. Soc. China 22, 366 (2012)

    CAS  Google Scholar 

  82. Y. Yang, A. Kushima, W. Han, H. Xin, J. Li, Liquid-Like Nano Lett. 18, 2492 (2018)

    CAS  Google Scholar 

  83. Q. Lu, W. Xu, S. van der Zwaag, Acta Mater. 77, 310 (2014)

    CAS  Google Scholar 

  84. H. Yu, W. Xu, S. van der Zwaag, Steel Res. Int. 89, 1800177 (2018)

    Google Scholar 

  85. S.H. Kang, S. Lee, J.Y. Suh, H.J. Kim, Y.K. Lee, J. Alloys Compd. 805, 1217 (2019)

    CAS  Google Scholar 

  86. J. Li, O.E. Shklyaev, T. Li, W. Liu, H. Shum, I. Rozen, A.C. Balazs, J. Wang, Nano Lett. 15, 7077 (2015)

    CAS  Google Scholar 

  87. S.A. Ponnusami, J. Krishnasamy, S. Turteltaub, S. van der Zwaag, Int. J. Solids Struct. 134, 249 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51701095) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170798).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shasha Zhang.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., van Dijk, N. & van der Zwaag, S. A Review of Self-healing Metals: Fundamentals, Design Principles and Performance. Acta Metall. Sin. (Engl. Lett.) 33, 1167–1179 (2020). https://doi.org/10.1007/s40195-020-01102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01102-3

Keywords

Navigation