Skip to main content

Advertisement

Log in

Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, aluminum oxide (Al2O3) ceramic samples were fabricated by 3D stereolithography printing. Printing process was followed by debinding and sintering. In addition, the effect of sintering temperature on microstructure and properties was investigated. Flexure strength was observed to increase with increasing sintering temperature due to fewer pores, fewer defects and stronger grain boundary bonding of samples at higher sintering temperatures. Maximum flexure strength of 138.5 MPa was obtained when sintering temperature was 150 °C. Furthermore, the shrinkage along length direction decreased with the decreasing sintering temperature until reaching minimum value of 1.02% after sintering at 1200 °C. After sintering at 1280 °C, flexure strength was 24.0 MPa and the shrinkage along length direction was 2.1%, which meets demands of ceramic core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Kazemi, M.A. Faghihi-Sani, M.J. Nayyeri, M. Mohammadi, M. Hajfathalian, Ceram. Int. 40, 1093 (2014)

    CAS  Google Scholar 

  2. J.C. Rotger, What is a good ceramic core. Incast. 6, 21 (2008)

    Google Scholar 

  3. J. Kastyl, Z. Chlup, F. Clemens, M. Trunec, J. Eur. Ceram. Soc. 35, 2873 (2015)

    CAS  Google Scholar 

  4. S. Bueno, B. Ferrari, C. Melandri, G. de Portub, C. Baudín, Ceram. Int. 36, 1545 (2010)

    CAS  Google Scholar 

  5. A. Kazemi, M.A. Faghihi-Sani, H.R. Alizadeh, J. Eur. Ceram. Soc. 33, 3397 (2013)

    CAS  Google Scholar 

  6. F. Li Trent, Study on fabrication and properties of high-porosity alumina-based ceramic core, Huazhong University of Science and Technology (2017)

  7. F. Azarmi, A. Amiri, Ceram. Int. 45, 271 (2019)

    CAS  Google Scholar 

  8. Y.H. Kim, J. Yeo, J.S. Lee, S.C. Choi, Ceram. Int. 42, 14738 (2016)

    CAS  Google Scholar 

  9. K. Li, W. Jiang, S. Wang, J. Xiao, L. Lou, J. Alloys Compd. 763, 781 (2018)

    CAS  Google Scholar 

  10. Y. Qin, W. Pan, Mater. Sci. Eng., A 508, 71 (2009)

    Google Scholar 

  11. J. Liang, Q. Lin, X. Zhang, T. Jin, Y. Zhou, X. Sun, B. Choi, I. Kim, J. Do, C.Y. Jo, J. Mater. Sci. Technol. 33, 204 (2017)

    Google Scholar 

  12. W. Jiang, K. Li, J. Xiao, L. Lou, J. Asian Ceram. Soc. 5, 410 (2017)

    Google Scholar 

  13. Y. Wang, L. Cheng, L. Zhang, Aeron Manuf. Technol. 3, 92 (2007)

    Google Scholar 

  14. H. Zhao, C. Ye, Z. Fan, C. Wang, J. Eur. Ceram. Soc. 37, 5119 (2017)

    CAS  Google Scholar 

  15. J. Deckers, K. Shahzad, J. Vleugels, J.P. Kruth, Rapid Prototyp. J. 18, 409 (2012)

    Google Scholar 

  16. K. Shahzad, J. Deckers, Z. Zhang, J.P. Kruth, J. Vleugels, J. Eur. Ceram. Soc. 34, 81 (2014)

    CAS  Google Scholar 

  17. A.N. Chen, M. Li, J. Xu, C.H. Lou, J.M. Wu, L.J. Cheng, Y.S. Shi, C.H. Li, Eur. Ceram. Soc. 38, 4553 (2018)

    CAS  Google Scholar 

  18. A.N. Chen, J.M. Wu, K. Liu, J.Y. Chen, H. Xiao, P. Cheng, C.H. Li, Y.S. Shi, Adv. Appl. Ceram. 117, 100 (2018)

    CAS  Google Scholar 

  19. M.M. Zieger, P. Müller, E. Blasco, C. Petit, V. Hahn, L. Michalek, H. Mutlu, M. Wegener, C. Barner-Kowollik, Adv. Funct. Mater. 30, 1 (2018)

    Google Scholar 

  20. Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, J. Eur. Ceram. Soc. 39, 661 (2019)

    CAS  Google Scholar 

  21. M. He, X. Huang, Z. Zeng, J. Yang, Macromolecules 46, 6402 (2013)

    CAS  Google Scholar 

  22. M.L. Griffith, J.W. Halloran, J. Am. Ceram. Soc. 79, 2601 (1996)

    CAS  Google Scholar 

  23. J.W. Halloran, V. Tomeckova, S. Gentry, S. Das, J. Eur. Ceram. Soc. 31, 2613 (2011)

    CAS  Google Scholar 

  24. C.J. Bae, A. Ramachandran, J.W. Halloran, J. Eur. Ceram. Soc. 38, 4082 (2018)

    CAS  Google Scholar 

  25. Z. Chen, J. Li, C. Liu, Y. Liu, J. Zhu, C. Lao, Ceram. Int. 45, 11549 (2019)

    CAS  Google Scholar 

  26. Z. Chen, C. Liu, J. Li, J. Zhu, Y. Liu, C. Lao, J. Feng, Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.174

    Article  Google Scholar 

  27. W. Zhou, D. Li, Z. Chen, P I Mech Eng B- JEng 224, 237 (2010)

    Google Scholar 

  28. Z. Chen, D. Li, W. Zhou, P I Mech Eng B- JEng 226, 1249 (2012)

    Google Scholar 

  29. C.J. Bae, J.W. Halloran, Int. Appl. Ceram. Technol. 8, 1255 (2011)

    CAS  Google Scholar 

  30. S.A. Sajjadi, H.R. Ezatpour, H. Beygi, Mater. Sci. Eng., A 528, 8765 (2011)

    CAS  Google Scholar 

  31. H. Tada, P. Paris, G. Irwin, The analysis of cracks handbook (ASME Press, New York, 2000), pp. 1–2

    Google Scholar 

  32. J.V. Crivello, E. Reichmanis, Chem. Mater. 26, 533 (2013)

    Google Scholar 

  33. S. Lee, S. Yang, I. Bajpai, I. Kang, S. Kim, Acta Metall. Sin. (Engl. Lett.) 28, 1109 (2015)

    CAS  Google Scholar 

  34. E. Bichaud, J.M. Chaix, C. Carry, M.C. Steil, J. Eur. Ceram. Soc. 35, 2587 (2015)

    CAS  Google Scholar 

  35. A.J. Gow, Int. Assoc. Hydrol. Sci. Publ. 114, 25 (1975)

    Google Scholar 

  36. C. Van Nguyen, S.K. Sistla, S. Van Kempen, N. Giang, A. Bezold, C. Broeckmann, F. Lange, J. Ceram. Soc. Jpn. 124, 301 (2016)

    CAS  Google Scholar 

  37. E. Tõldsepp, F. Schoenstein, M. Amamra, R. Saar, E. Feldbach, A. Kanaev, M. Kirm, Ceram. Int. 42, 11709 (2016)

    Google Scholar 

  38. P. Ván, C. Papenfuss, W. Muschik, J. Phys. A: Math. Gen. 37, 5315 (2004)

    Google Scholar 

  39. H.L. Wen, Y.Y. Chen, F.S. Yen, C.Y. Huang, Nanostruct. Mater. 11, 89 (1999)

    CAS  Google Scholar 

  40. F. Azarmi, A. Amiri, Ceram. Int. 45, 271 (2019)

    CAS  Google Scholar 

  41. T.M. Onn, S. Zhang, L. Arroyo-Ramirez, Y. Xia, C. Wang, X. Pan, G.W. Graham, R.J. Gorte, Appl. Catal. B-Environ. 201, 430 (2017)

    CAS  Google Scholar 

  42. S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan, D. Gonbeau, J. Electrochem. Soc. 154, A1088 (2007)

    CAS  Google Scholar 

  43. W. Jiang, K. Li, J. Xiao, L. Lou, J. Asian Ceram. Soc. 5, 410 (2017)

    Google Scholar 

  44. A. Nazari, S. Riahi, S. Riahi, S.F. Shamekhi, A. Khademno, J. Am. Ceram. Soc. 6, 94 (2010)

    Google Scholar 

  45. T. Phoo-ngernkham, P. Chindaprasirt, V. Sata, S. Hanjitsuwan, S. Hatanaka, Mater. Des. 55, 58 (2014)

    CAS  Google Scholar 

  46. R.C. Atwood, P.D. Lee, Acta Mter. 51, 5447 (2003)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB1106600), the Chinese National Foundation for Natural Sciences under Contracts (No. 51672217), and the Research Fund of the State Key Laboratory of Solidification Processing (Grant No. 120-TZ-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Liu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Y., Liu, Y. et al. Influence of Sintering Temperature on Microstructure and Mechanical Properties of Al2O3 Ceramic via 3D Stereolithography. Acta Metall. Sin. (Engl. Lett.) 33, 204–214 (2020). https://doi.org/10.1007/s40195-019-00950-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00950-y

Keywords

Navigation