Skip to main content
Log in

Fe-Based Powders Prepared by Ball-Milling with Considerable Degradation Efficiency to Methyl Orange Compared with Fe-Based Metallic Glasses

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this study, the degradation efficiencies of zero-valent iron (ZVI) powders with different structures and components were evaluated for methyl orange (MO). The results show that the structure is an essential factor that affects degradation, and added non-metallic elements help optimize the structure. The amorphous and balled-milled crystalline Fe70Si10B20 has comparative degradation efficiencies to MO with t1/2 values of 6.9 and 7.0 min, respectively. Increasing the boron content can create a favorable structure and promote degradation. The ball-milled crystalline Fe70B30 and Fe43.64B56.36 powders have relatively short t1/2 values of 5.2 and 3.3 min, respectively. The excellent properties are mainly attributed to their heterogeneous structure with boron-doped active sites in ZVI. Composition segregation in the nanoscale range in an amorphous FeSiB alloy and small boron particles in the microscale range embedded in large iron particles prepared by ball-milling, both constitute effective galvanic cells that promote iron electron loss and therefore decompose organic chemicals. These findings may provide a new, highly efficient, low-cost commercial method for azo dye wastewater treatment using ZVI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77, 247 (2001)

    Article  Google Scholar 

  2. İ. Arslan, I.A. Balcioǧlu, T. Tuhkanen, Chemosphere 39, 2767 (1999)

    Article  Google Scholar 

  3. R.G. Saratale, G.D. Saratale, J.S. Chang, S.P. Govindwar, J. Taiwan Inst. Chem. Eng. 42, 138 (2011)

    Article  Google Scholar 

  4. K.T. Chung, J. Environ. Sci. Health C 34, 233 (2016)

    Article  Google Scholar 

  5. S.D. Kalme, G.K. Parshetti, S.U. Jadhav, S.P. Govindwar, Bioresour. Technol. 98, 1405 (2007)

    Article  Google Scholar 

  6. R. Sivaraj, C. Namasivayam, K. Kadirvelu, Waste Manag 21, 105 (2001)

    Article  Google Scholar 

  7. M. Punzi, A. Anbalagan, R. Aragão Börner, B.M. Svensson, M. Jonstrup, B. Mattiasson, Chem. Eng. J. 270, 290 (2015)

    Article  Google Scholar 

  8. P.V. Nidheesh, R. Gandhimathi, S.T. Ramesh, Environ. Sci. Pollut. Res. 20, 2099 (2013)

    Article  Google Scholar 

  9. W. Feng, D. Nansheng, H. Helin, Chemosphere 41, 1233 (2000)

    Article  Google Scholar 

  10. Y. Liu, X. Chen, J. Li, C. Burda, Chemosphere 61, 11 (2005)

    Article  Google Scholar 

  11. Z. Xiao, Q. Zhou, H. Qin, J. Qiao, X. Guan, Desalin. Water Treat. 57, 1659 (2016)

    Article  Google Scholar 

  12. H. Liu, G. Li, J. Qu, H. Liu, J. Hazard. Mater. 144, 180 (2007)

    Article  Google Scholar 

  13. J. Fan, Y. Guo, J. Wang, M. Fan, J. Hazard. Mater. 166, 904 (2009)

    Article  Google Scholar 

  14. C. Zhang, H. Zhang, M. Lv, Z. Hu, J. Non. Cryst. Solids 356, 1703 (2010)

    Article  Google Scholar 

  15. B. Lin, X. Bian, P. Wang, G. Luo, Mater. Sci. Eng. B 177, 92 (2012)

    Article  Google Scholar 

  16. J.-Q. Wang, Y.-H. Liu, M.-W. Chen, G.-Q. Xie, D.V. Louzguine-Luzgin, A. Inoue, J.H. Perepezko, Adv. Funct. Mater. 22, 2567 (2012)

    Article  Google Scholar 

  17. S. Das, V. Bandi, H.S. Arora, M. Veligatla, S. Garrison, F. D’Souza, S. Mukherjee, J. Mater. Res. 30, 1121 (2015)

    Article  Google Scholar 

  18. Y. Tang, Y. Shao, N. Chen, X. Liu, S.Q. Chen, K.F. Yao, RSC Adv. 5, 34032 (2015)

    Article  Google Scholar 

  19. S. Xie, P. Huang, J.J. Kruzic, X. Zeng, H. Qian, Sci. Rep. 6, 21947 (2016)

    Article  Google Scholar 

  20. R. Khan, S.W. Kim, T.J. Kim, C.M. Nam, Mater. Chem. Phys. 112, 167 (2008)

    Article  Google Scholar 

  21. J. Thibaud, Nature 121, 321 (1928)

    Article  Google Scholar 

  22. H.Y. Shu, M.C. Chang, H.H. Yu, W.H. Chen, J. Colloid Interface Sci. 314, 89 (2007)

    Article  Google Scholar 

  23. D.G. Tong, W. Chu, P. Wu, G.F. Gu, L. Zhang, J. Mater. Chem. A 1, 358 (2013)

    Article  Google Scholar 

  24. R. Fernandes, N. Patel, A. Miotello, M. Filippi, J. Mol. Catal. A Chem. 298, 1 (2009)

    Article  Google Scholar 

  25. R. Jain, N.S. Saxena, K.V.R. Rao, D.K. Avasthi, K. Asokan, Mater. Sci. Eng. A 297, 105 (2001)

    Article  Google Scholar 

  26. Q. Hu, X.R. Zeng, M.W. Fu, Appl. Phys. Lett. 97, 96 (2010)

    Google Scholar 

  27. K. Brzbzka, A. Slawska-waniewska, P. Nowicki, K. Jezuita, Mater. Sci. Eng. A 228, 654 (1997)

    Article  Google Scholar 

  28. L.J. Matheson, P.G. Tratnyek, Environ. Sci. Technol. 28, 2045 (1994)

    Article  Google Scholar 

  29. P.A. Thiel, T.E. Madey, Surf. Sci. Rep. 7, 211 (1987)

    Article  Google Scholar 

  30. W.H. Hung, J. Schwartz, S.L. Bernasek, Surf. Sci. Lett. 248, 332 (1991)

    Article  Google Scholar 

  31. S.M. Ponder, J.G. Darab, J. Bucher, D. Caulder, I. Craig, L. Davis, N. Edelstein, W. Lukens, H. Nitsche, L. Rao, Chem. Mater. 13, 479 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program of Introducing Innovative Research Team in Dongguan under Contract Number 2014607109 and Shenzhen Science and Technology Research Grants under Contract Numbers JCYJ20160422104921235, JCYJ20160422143659258 and JCYJ20160422144751573.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hui Xie.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, SH., Peng, GQ., Tu, XM. et al. Fe-Based Powders Prepared by Ball-Milling with Considerable Degradation Efficiency to Methyl Orange Compared with Fe-Based Metallic Glasses. Acta Metall. Sin. (Engl. Lett.) 31, 1207–1214 (2018). https://doi.org/10.1007/s40195-018-0751-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-018-0751-3

Keywords

Navigation