Skip to main content
Log in

Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching–Partitioning–Tempering Steels

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The orientation relationships (ORs) between the martensite and the retained austenite in low- and medium-carbon steels after quenching–partitioning–tempering process were studied in this work. The ORs in the studied steels are identified by selected-area electron diffraction (SAED) as either K–S or N–W ORs. Meanwhile, the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto. The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure, which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions. However, the simulated results coincide well with experimental pole figures in the high-index directions {123}bcc. A modified method with simplicity based on Miyamoto’s work was proposed. The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’ method, that is, the OR is near K–S OR for the low-carbon Q–P–T steel, and with the increase of carbon content, the OR is closer to N–W OR in medium-carbon Q–P–T steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.Y. Hsu, Mater. Sci. Forum 561–565, 2283 (2007)

    Article  Google Scholar 

  2. J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51, 2611 (2003)

    Article  Google Scholar 

  3. X.D. Wang, B.X. Huang, Y.H. Rong, L. Wang, Mater. Sci. Eng., A 438, 300 (2006)

    Article  Google Scholar 

  4. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, Acta Mater. 56, 16 (2008)

    Article  Google Scholar 

  5. N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Mater. Sci. Eng., A 506, 111 (2009)

    Article  Google Scholar 

  6. X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, L. Wang, J. Mater. Res. 24, 260 (2009)

    Article  Google Scholar 

  7. K. Zhang, P. Liu, W. Li, Z.H. Guo, Y.H. Rong, Mater. Sci. Eng., A 619, 205 (2014)

    Article  Google Scholar 

  8. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, T. Maki, Acta Mater. 51, 1789 (2003)

    Article  Google Scholar 

  9. C.P. Luo, J. Liu, Mater. Sci. Eng., A 438, 149 (2006)

    Article  Google Scholar 

  10. H. Kitahare, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater. 54, 1279 (2006)

    Article  Google Scholar 

  11. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, Acta Mater. 54, 5323 (2006)

    Article  Google Scholar 

  12. S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng., A 438, 237 (2006)

    Article  Google Scholar 

  13. G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, Acta Mater. 60, 1139 (2012)

    Article  Google Scholar 

  14. A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedstrom, A. Borgenstam, Acta Mater. 60, 7265 (2012)

    Article  Google Scholar 

  15. G. Miyamoto, N. Iwata, N. Takayama, T. Furuhara, J. Alloys Compd. 577, 528 (2013)

    Article  Google Scholar 

  16. F. Maresca, V.G. Kouznetsova, M.G.D. Geers, J. Mech. Phys. Solids 73, 69 (2014)

    Article  Google Scholar 

  17. P.M. Kelly, A. Jostsons, R.G. Blake, Acta Metall. Mater. 38, 1075 (1990)

    Article  Google Scholar 

  18. M.X. Zhang, P.M. Kelly, Mater. Sci. Eng., A 438, 272 (2006)

    Article  Google Scholar 

  19. P.P. Suikkanen, C. Cayron, A.J. De Ardo, P. Karjalainen, J. Mater. Sci. Technol. 27, 920 (2011)

    Article  Google Scholar 

  20. G. Nolze, Cryst. Res. Technol. 41, 72 (2006)

    Article  Google Scholar 

  21. G. Miyamoto, N. Takayama, T. Furuhara, Scr. Mater. 60, 1113 (2009)

    Article  Google Scholar 

  22. Y. Wang, K. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Acta Metall. Sin. 48, 641 (2012)

    Article  Google Scholar 

  23. K. Zhang, M.H. Zhang, Z.H. Guo, N.L. Chen, Y.H. Rong, Mater. Sci. Eng., A 528, 8486 (2011)

    Article  Google Scholar 

  24. S.W. Qin, Y. Liu, Q.G. Hao, Y. Wang, N.L. Chen, X.W. Zuo, Y.H. Rong, Mater. Sci. Eng., A 663, 151 (2016)

    Article  Google Scholar 

  25. M. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Mater. Charact. 59, 1758 (2008)

    Article  Google Scholar 

  26. G. Thomas, J.G. Speer, D.K. Matlock, J. Michael, Microsc. Microanal. 17, 368 (2011)

    Article  Google Scholar 

  27. F. Barcelo, Y. De Carlan, J.L. Béchade, B. Fournier, Phase Transit. 82, 808 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work is financially supported by the National Natural Science Foundation of China (Nos. 51301106 and 51471110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Liu, P., Li, W. et al. Quantitative Analysis of the Crystallographic Orientation Relationship Between the Martensite and Austenite in Quenching–Partitioning–Tempering Steels. Acta Metall. Sin. (Engl. Lett.) 31, 659–667 (2018). https://doi.org/10.1007/s40195-017-0683-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0683-3

Keywords

Navigation