Skip to main content
Log in

{411}<148> Texture in Thin-Gauge Grain-Oriented Silicon Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The significant occupancy of {411}<148> texture exists in the thin-gauge grain-oriented silicon steel (TG-CRGO is defined that thickness of the sheet is <0.25 mm and the reduction in cold rolling is more than 90%) which has been considered to have obviously effects on the abnormal growth of Goss-oriented grains during the secondary recrystallization process. The microstructures of the TG-CRGO were investigated by X-ray diffraction and electron back-scattered diffraction in this study. It was found that {411}<148> texture mainly exists in the center layer of hot-rolled as well as normalized plates. With the increase in cold rolling reduction, {411}<148> orientation gradually rotates to α-fiber texture (<110>//RD). Finally, few {411}<148> would retain at the boundaries of deformed α-fiber grains (<110>//RD) as the reduction in cold rolling reaches 90%. After annealing treatment, a small amount of γ-fiber textures (<111>//ND) preferably nucleates and recrystallizes between the DBs (deformation bands) at first; then, the {411}<148> recrystallization texture occurs and mainly nucleates at the grains boundaries of the deformed α-fiber grains, and also quite a few {411}<148> orientation grains nucleate in the inner of {112}<110> grains. But this phenomenon was not observed in the {100}<011> deformation grains. With respect to the occurrence of {411}<148> recrystallization texture, it is mainly induced by strong α-fiber as well as weak γ-fiber textures formed during cold rolling other than originating from {411}<148> regions in hot bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Homma, S. Nakamura, N. Yoshinaga, Mater. Sci. Forum 467–470, 269 (2004)

    Article  Google Scholar 

  2. M.Z. Quadir, B.J. Duggan, Acta Mater. 52, 4011 (2004)

    Article  Google Scholar 

  3. A.L. Etter, T. Baudin, R. Penelle, Scr. Mater. 47, 725 (2002)

    Article  Google Scholar 

  4. Y. Hayakawa, J.A. Szpunar, Acta Mater. 45, 1285 (1997)

    Article  Google Scholar 

  5. Y. Hayakawa, M. Muraki, J.A. Szpunar, Acta Mater. 46, 1063 (1998)

    Article  Google Scholar 

  6. T. Sakai, M. Shiozaki, K. Takashina, J. Appl. Phys. 5, 2369 (1979)

    Article  Google Scholar 

  7. M.Z. Quadir, C.S.T. Chang, B.J. Duggan, ISIJ Int. 50, 264 (2010)

    Article  Google Scholar 

  8. T. Kumano, T. Haratani, Y. Ushigami, ISIJ Int. 42, 440 (2002)

    Article  Google Scholar 

  9. H.K. Park, C.S. Park, T.W. Na, C.H. Han, N.M. Hwang, Mater. Trans. 53, 658 (2012)

    Article  Google Scholar 

  10. S. Mishra, C. Darmann, K. Lucke, Acta Metall. 32, 2185 (1984)

    Article  Google Scholar 

  11. M.R. Nave, M.R. Barnett, H. Beladi, ISIJ Int. 44, 1072 (2004)

    Article  Google Scholar 

  12. W.M. Mao, P. Yang, Material Science Principles on Electrical Steels (Higher Education Press, Beijing, 2013)

    Google Scholar 

  13. P. Gobernado, R.H. Petrov, L.A.I. Kestens, Scr. Mater. 16, 623 (2012)

    Article  Google Scholar 

  14. T. Toge, M. Muraki, M. Komatsubara, O. Takashi, ISIJ Int. 38, 524 (1998)

    Article  Google Scholar 

  15. M.D. Nave, M.R. Barnett, H. Beladi, ISIJ Int. 44, 1072 (2004)

    Article  Google Scholar 

  16. K. Ushioda, W.B. Hutchinson, ISIJ Int. 29, 862 (1989)

    Article  Google Scholar 

  17. K.J. Ko, H.K. Park, C.H. Han, Mater. Sci. Forum 702–703, 591 (2012)

    Google Scholar 

  18. A. Bottcher, K. Lucke, Acta Metall. Mater. 41(8), 2503 (1993)

    Article  Google Scholar 

  19. R.L. Every, M. Hatherly, Texture 1, 183 (1974)

    Article  Google Scholar 

  20. H.T. Liu, Z.Y. Liu, Y. Sun, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, G.D. Wang, Mater. Lett. 81, 65 (2012)

    Article  Google Scholar 

  21. P.A. Beck, Acta Metall. 1(2), 230 (1953)

    Article  Google Scholar 

  22. K. Verbeken, L. Kestens, J.J. Jonas, Scr. Mater. 48, 1457 (2003)

    Article  Google Scholar 

  23. M.Q. Yan, H. Qian, P. Yang, W.M. Mao, Q.W. Jian, W.X. Jin, J. Mater. Sci. Technol. 27, 1065 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China’s State Grid Corporation of Science and Technology Projects (No. SGRI-WD-71-13-002) and the National Natural Science Foundation of China (No. 51171019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Meng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, CX., Yang, FY., Ma, G. et al. {411}<148> Texture in Thin-Gauge Grain-Oriented Silicon Steel. Acta Metall. Sin. (Engl. Lett.) 29, 554–560 (2016). https://doi.org/10.1007/s40195-016-0419-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0419-9

Keywords

Navigation