Skip to main content
Log in

Effect of Axial Magnetic Field on the Microstructure, Hardness and Wear Resistance of TiN Films Deposited by Arc Ion Plating

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

TiN films were deposited on stainless steel substrates by arc ion plating. The influence of an axial magnetic field was examined with regard to the microstructure, chemical elemental composition, mechanical properties and wear resistance of the films. The results showed that the magnetic field puts much effect on the preferred orientation, chemical composition, hardness and wear resistance of TiN films. The preferred orientation of the TiN films changed from (111) to (220) and finally to the coexistence of (111) and (220) texture with the increase in the applied magnetic field intensity. The concentration of N atoms in the TiN films increases with the magnetic field intensity, and the concentration of Ti atoms shows an opposite trend. At first, the hardness and elastic modulus of the TiN films increase and reach a maximum value at 5 mT and then decrease with the further increase in the magnetic field intensity. The high hardness was related to the N/Ti atomic ratio and to a well-pronounced preferred orientation of the (111) planes in the crystallites of the film parallel to the substrate surface. The wear resistance of the TiN films was significantly improved with the application of the magnetic field, and the lowest wear rate was obtained at magnetic field intensity of 5 mT. Moreover, the wear resistance of the films was related to the hardness H and the H 3/E* 2 ratio in the manner that a higher H 3/E* 2 ratio was conducive to the enhancement of the wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Sathrum, B.F. Coll, Surf. Coat. Technol. 50, 103 (1992)

    Article  Google Scholar 

  2. Y.H. Zhao, G.Q. Lin, C. Dong, L.S. Wen, J. Mater. Sci. Technol. 21, 423 (2005)

    Article  Google Scholar 

  3. W.C. Lang, J.Q. Xiao, J. Gong, C. Sun, R.F. Huang, L.S. Wen, Vacuum 84, 1111 (2010)

    Article  Google Scholar 

  4. Y.H. Zhao, X.Q. Wang, J.Q. Xiao, B.H. Yu, F.Q. Li, Appl. Surf. Sci. 258, 370 (2011)

    Article  Google Scholar 

  5. Y.H. Zhao, G.Q. Lin, J.Q. Xiao, W.C. Lang, C. Dong, J. Gong, C. Sun, Appl. Surf. Sci. 257, 5694 (2011)

    Article  Google Scholar 

  6. I.I. Aksenov, V.G. Padalka, V.T. Tolok, V.M. Khoroshikh, Sov. J. Plasma Phys. 6, 505 (1980)

    Google Scholar 

  7. D.M. Sanders, E.A. Pyle, J. Vac. Sci. Technol. A 5, 2728 (1987)

    Article  Google Scholar 

  8. P.J. Martin, A. Bendavid, Thin Solid Films 394, 1 (2001)

    Article  Google Scholar 

  9. M.M.M. Bilek, Y. Yin, D.R. McKenzie, W.I. Milne, Ion transport mechanisms in a filtered cathodic vacuum arc (FCVA) system, in Proceedings ISDEIV: XVIIth International Symposium on Discharges and Electrical Insulation in Vacuum, Berkeley, CA, vol. 2 (IEEE, New York, 1996), pp. 962–966, July 21–26 1996

  10. M.B. Taylor, J.G. Partridge, D.G. McCulloch, M.M.M. Bilek, D.R. McKenzie, Thin Solid Films 519, 3573 (2011)

    Article  Google Scholar 

  11. B.P. Cluggish, I.E.E.E. Trans, Plasma Sci. 26, 1645 (1998)

    Article  Google Scholar 

  12. A. Anders, G.Y. Yushkov, J. Appl. Phys. 91, 4824 (2002)

    Article  Google Scholar 

  13. A. Anders, G.Y. Yushkov, E. Oks, A. Nikolaev, I. Brown, Rev. Sci. Instrum. 69, 1332 (1998)

    Article  Google Scholar 

  14. E.M. Oks, I.G. Brown, M.R. Dickinson, R.A. MacGill, H. Emig, P. Spaedtke, B.H. Wolf, Appl. Phys. Lett. 67, 200 (1995)

    Article  Google Scholar 

  15. E.M. Oks, K.P. Savkin, S.Y. Yushkov, A.G. Nikolaev, A. Anders, I.G. Brown, Rev. Sci. Instrum. 77, 03B504-3 (2006)

    Google Scholar 

  16. A.A. Plyutto, U.N. Ryzhkov, A.T. Koplin, Sov. Phys. JETP 20, 328 (1965)

    Google Scholar 

  17. A. Anders, G. Yushkov, E. Oks, A. Nikolaev, I. Brown, Rev. Sci. Instrum. 69, 791 (1998)

    Article  Google Scholar 

  18. D.M. Sanders, J. Vac. Sci. Technol. A 7, 1181 (1989)

    Article  Google Scholar 

  19. J.S. Yoon, J.G. Han, Surf. Coat. Technol. 94–95, 201 (1997)

    Article  Google Scholar 

  20. T.G. Wang, D. Jeong, Y.M. Liu, Q.M. Wang, S. Iyengar, S. Melin, K.H. Kim, Surf. Coat. Technol. 206, 2638 (2012)

    Article  Google Scholar 

  21. V.N. Zhitomirsky, R.L. Boxman, S. Goldsmith, Surf. Coat. Technol. 68–69, 146 (1994)

    Article  Google Scholar 

  22. B. Chapmen, Glow Discharge Processes (Wiley, New York, 1980)

    Google Scholar 

  23. P.J. Martin, A. Bendavid, T.J. Kinder, L. Wielunski, Surf. Coat. Technol. 87, 271 (1996)

    Article  Google Scholar 

  24. M. Vargas, H.A. Castillo, E. Restrepo-Parra, W.D.L. Cruz, Appl. Surf. Sci. 279, 7 (2013)

    Article  Google Scholar 

  25. J.M. Schneider, A. Anders, G.Y. Yushkov, Appl. Phys. Lett. 78, 150 (2001)

    Article  Google Scholar 

  26. C.V. Thompson, R. Carel, J. Mater. Sci. Eng. B 32, 211 (1995)

    Article  Google Scholar 

  27. I. Petrov, P. Barna, L. Hultman, J. Greene, J. Vac. Sci. Technol. A 21, S117 (2003)

    Article  Google Scholar 

  28. P.J. Martin, A. Bendavid, T.J. Kinder, I.E.E.E. Trans, Plasma Sci. 25, 675 (1997)

    Article  Google Scholar 

  29. G.Q. Yu, B.K. Tay, S.P. Lau, K. Prasad, L.K. Pan, J.W. Chai, D. Lai, Chem. Phys. Lett. 374, 264 (2003)

    Article  Google Scholar 

  30. H. Jiménez, E. Restrepo, A. Devia, Surf. Coat. Technol. 201, 1594 (2006)

    Article  Google Scholar 

  31. J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitour, Thin Solid Films 197, 117 (1991)

    Article  Google Scholar 

  32. J.P. Zhao, X. Wang, T.S. Shi, X.H. Liu, J. Appl. Phys. 79, 9399 (1996)

    Article  Google Scholar 

  33. J.P. Zhao, Z.Y. Chen, X. Wang, Y.H. Yu, S.Q. Yang, T.S. Shi, X.H. Liu, Nucl. Instrum. Methods Phys. Res. B 135, 388 (1998)

    Article  Google Scholar 

  34. E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang, Appl. Surf. Sci. 254, 3909 (2008)

    Article  Google Scholar 

  35. F.H. Lu, H.Y. Chen, Surf. Coat. Technol. 130, 290 (2000)

    Article  Google Scholar 

  36. B.A. Movchan, A.V. Demchishin, Phys. Met. Metallogr. 28, 83 (1968)

    Google Scholar 

  37. J.A. Thornton, Ann. Rev. Mater. Sci. 7, 239 (1977)

    Article  Google Scholar 

  38. A. Anders, Thin Solid Films 518, 4087 (2010)

    Article  Google Scholar 

  39. S.C. Liang, Z.C. Chang, D.C. Tsai, Y.C. Lin, H.S. Sung, M.J. Deng, F.S. Shieu, Appl. Surf. Sci. 257, 7709 (2011)

    Article  Google Scholar 

  40. K. Vasu, M.G. Krishna, K.A. Padmanabhan, Appl. Surf. Coat. 257, 3069 (2011)

    Article  Google Scholar 

  41. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  Google Scholar 

  42. A.V. Biely, H. Kheyrandish, J.S. Colligon, Thin Solid Films 200, 283 (1991)

    Article  Google Scholar 

  43. C.T. Chen, Y.C. Song, G.P. Yu, J.H. Huang, J. Mater. Eng. Perform. 7, 324 (1998)

    Article  Google Scholar 

  44. L. Hultman, M. Shinn, P.B. Mirkarimi, S.A. Barnett, J. Cryst. Growth 135, 309 (1994)

    Article  Google Scholar 

  45. W.J. Chou, G. Ping, J.H. Huang, Surf. Coat. Technol. 149, 7 (2002)

    Article  Google Scholar 

  46. J.H. Je, D.Y. Noh, H.K. Kim, K.S. Liang, J. Appl. Phys. 81, 6126 (1997)

    Article  Google Scholar 

  47. M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, Surf. Coat. Technol. 202, 3129 (2008)

    Article  Google Scholar 

  48. P.J. Martin, R.P. Netterfield, A. Bendavid, T.J. Kinder, in Proceedings of 36th Annual Technical Conference of the Society of Vacuum Coaters, Dallas, TX (Society of Vacuum Coaters, Albuquerque 1993), pp. 375–378, April 25–30 1993

  49. Q.N. Meng, M. Wen, C.Q. Hu, S.M. Wang, K. Zhang, J.S. Lian, W.T. Zheng, Surf. Coat. Technol. 206, 3250 (2012)

    Article  Google Scholar 

  50. J.E. Sundgren, Thin Solid Films 128, 21 (1985)

    Article  Google Scholar 

  51. M.M. Larijani, N. Tabrizi, Sh Norouzian, A. Jafari, S. Lahouti, Vacuum 81, 550 (2006)

    Article  Google Scholar 

  52. L.E. Toth, Transition Metal Carbides and Nitrides (Academic Press, New York, 1971)

    Google Scholar 

  53. J.J. Olaya, G. Wei, S.E. Rodil, S. Muhl, B. Bhushan, Vacuum 81, 610 (2007)

    Article  Google Scholar 

  54. J. Musil, R. Daniel, Surf. Coat. Technol. 166, 243 (2003)

    Article  Google Scholar 

  55. J. Musil, Surf. Coat. Technol. 125, 322 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51171197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Hui Zhao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YH., Yang, WJ., Guo, CQ. et al. Effect of Axial Magnetic Field on the Microstructure, Hardness and Wear Resistance of TiN Films Deposited by Arc Ion Plating. Acta Metall. Sin. (Engl. Lett.) 28, 984–993 (2015). https://doi.org/10.1007/s40195-015-0285-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0285-x

Keywords

Navigation