Skip to main content
Log in

Effects of Sub-zero Celsius Treatment and Tempering on the Stability of Retained Austenite in Bearing Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this work, the influence of sub-zero Celsius treatment and tempering on the mechanical and thermal stability of retained austenite in bearing steel were assessed by tensile test and DSC. Compared with traditional quenched and tempered treatment, sub-zero Celsius treatment obviously decreases the volume fraction of retained austenite. Moreover, the mechanical stability of retained austenite was enhanced due to the accumulation of compressive stresses in retained austenite after sub-zero Celsius treatment and tempering. Meanwhile, the morphology of retained austenite changed from film-like to blocky with austenitization temperature increasing, and the mechanical stability of film-like retained austenite is higher than that of blocky one. The DSC results showed that the activation energy of retained austenite decomposition slightly increased through sub-zero Celsius treatment and tempering. This result may probably be ascribed to partitioning of carbon during tempering. However, the temperature at which retained austenite starts to decompose is unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.R. Davis, K.M. Mills, S.R. Lampman, Properties and Selection: Irons, Steels, and High-performance Alloys (ASM International, Materials Park, 1990), pp. 167–213

    Google Scholar 

  2. H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties (Butterworth-Heinemann, Oxford, 2011), pp. 36–58

    Google Scholar 

  3. H.K.D.H. Bhadeshia, Prog. Mater Sci. 57, 268 (2012)

    Article  Google Scholar 

  4. E.S. Alley, R.W. Neu, Int. J. Fatigue 32, 841 (2010)

    Article  Google Scholar 

  5. C.H. Surberg, P. Stratton, K. Lingenhöle, Cryogenics 48, 42 (2008)

    Article  Google Scholar 

  6. A. Akhbarizadeh, A. Shafyei, M. Golozar, Mater. Des. 30, 3259 (2009)

    Article  Google Scholar 

  7. D. Senthilkumar, I. Rajendran, M. Pellizzari, J. Siiriainen, J. Mater. Process. Technol. 211, 396 (2011)

    Article  Google Scholar 

  8. M.A. Jaswin, D.M. Lal, A. Rajadurai, Tribol. Trans. 54, 341 (2011)

    Article  Google Scholar 

  9. D. Mohan Lal, S. Renganarayanan, A. Kalanidhi, Cryogenics 41, 149 (2001)

    Article  Google Scholar 

  10. A. Bensely, A. Prabhakaran, D. Mohan Lal, G. Nagarajan, Cryogenics 45, 747 (2006)

    Article  Google Scholar 

  11. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, J. Mater. Process. Technol. 118, 350 (2001)

    Article  Google Scholar 

  12. D. Das, A.K. Dutta, K.K. Ray, Wear 266, 297 (2009)

    Article  Google Scholar 

  13. S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186, 298 (2007)

    Article  Google Scholar 

  14. D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng., A 527, 2182 (2010)

    Article  Google Scholar 

  15. S. Gill, H. Singh, R. Singh, J. Singh, Int. J. Adv. Manuf. Technol. 48, 175 (2010)

    Article  Google Scholar 

  16. S.S. Gill, J. Singh, R. Singh, H. Singh, Int. J. Adv. Manuf. Technol. 54, 59 (2011)

    Article  Google Scholar 

  17. J.R. Patel, M. Cohen, Acta Metall. 1, 531 (1953)

    Article  Google Scholar 

  18. K.Y. Golovchiner, Phys. Met. Metallogr. 37, 126 (1974)

    Google Scholar 

  19. M. Villa, K. Pantleon, M.A. Somers, Acta Mater. 65, 383 (2014)

    Article  Google Scholar 

  20. M. Preciado, M. Pellizzari, J. Mater. Sci. 49, 8183 (2014)

    Article  Google Scholar 

  21. Y. Ohmori, S. Sugisawa, Trans. Jpn. Inst. Met. 12, 170 (1971)

    Article  Google Scholar 

  22. S. Matas, R. Hehemann, Nature 187, 685 (1960)

    Article  Google Scholar 

  23. Subcommittee, ASTM E8/E8M-13a, 2013

  24. L. Zhao, N. Van Dijk, E. Brück, J. Sietsma, S. Van der Zwaag, Mater. Sci. Eng. A 313, 145 (2001)

    Article  Google Scholar 

  25. I.C. Noyan, J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York, 1987)

    Book  Google Scholar 

  26. Q. Feng, C. Jiang, Z. Xu, Mater. Des. 47, 68 (2013)

    Article  Google Scholar 

  27. I. Zucato, M.C. Moreira, I.F. Machado, S.M.G. Lebrão, Mater. Res. 5, 385 (2002)

    Article  Google Scholar 

  28. H.E. Kissinger, Analyt. Chem. 29, 1702 (1957)

    Article  Google Scholar 

  29. E.J. Mittemeijer, J. Mater. Sci. 27, 3977 (1992)

    Article  Google Scholar 

  30. H. Luo, J.J. Liu, B.L. Zhu, Wear 174, 57 (1994)

    Article  Google Scholar 

  31. K.I. Sugimoto, M. Kobayashi, S.I. Hashimoto, Metall. Trans. A 23, 3085 (1992)

    Article  Google Scholar 

  32. J. Shi, X. Sun, M. Wang, W. Hui, H. Dong, W. Cao, Scr. Mater. 63, 815 (2010)

    Article  Google Scholar 

  33. M. Van Rooyen, E. Mittemeijer, Scr. Metall. 16, 1255 (1982)

    Article  Google Scholar 

  34. E. Mittemeijer, J. Mater. Sci. 27, 3977 (1992)

    Article  Google Scholar 

  35. M. Villa, F.B. Grumsen, K. Pantleon, M.A. Somers, Scr. Mater. 67, 621 (2012)

    Article  Google Scholar 

  36. G. Thomas, Metall. Trans. A 9, 439 (1978)

    Article  Google Scholar 

  37. Y. Tomita, T. Okawa, Mater. Sci. Eng., A 172, 145 (1993)

    Article  Google Scholar 

  38. H.S. Yang, H. Bhadeshia, Scr. Mater. 60, 493 (2009)

    Article  Google Scholar 

  39. I.B. Timokhina, P.D. Hodgson, E.V. Pereloma, Metall. Mater. Trans. A 35, 2331 (2004)

    Article  Google Scholar 

  40. K. Nakazawa, G. Krauss, Metall. Trans. A 9, 681 (1978)

    Article  Google Scholar 

  41. G. Krauss, Mater. Sci. Eng., A 273, 40 (1999)

    Article  Google Scholar 

  42. X. Xiong, B. Chen, M. Huang, J. Wang, L. Wang, Scr. Mater. 68, 321 (2013)

    Article  Google Scholar 

  43. P. Morra, A. Böttger, E. Mittemeijer, J. Therm. Anal. Calorim. 64, 905 (2001)

    Article  Google Scholar 

  44. W. Shi, L. Li, B.C. De Cooman, P. Wollants, C.X. Yang, J. Iron. Steel Res. Int. 15, 61 (2008)

    Article  Google Scholar 

  45. W. Batz, R.F. Mechl, Trans. AIME 188, 553 (1950)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2011CB706604) and National Natural Science Foundation of China (No. 51174251 and 51201105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Xue-Jun Jin.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, XH., Li, W., Wang, CL. et al. Effects of Sub-zero Celsius Treatment and Tempering on the Stability of Retained Austenite in Bearing Steel. Acta Metall. Sin. (Engl. Lett.) 28, 787–792 (2015). https://doi.org/10.1007/s40195-015-0264-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0264-2

Keywords

Navigation