Skip to main content
Log in

High-temperature Oxidation Behavior of a High Manganese Austenitic Steel Fe–25Mn–3Cr–3Al–0.3C–0.01N

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

In this paper, a Fe–Mn–Al–C austenitic steel with certain addition of Cr and N alloy was used as experimental material. By using the SETSYS Evolution synchronous differential thermal analysis apparatus, the scanning electron microscope (SEM), the electron microprobe (EPMA) and the X-ray diffraction (XRD), the high-temperature oxidation behavior microstructure and the phase compositions of this steel in air at 600–1,000 °C for 8 h have been studied. The results show that in the whole oxidation temperature range, there are three distinct stages in the mass gain curves at temperature higher than 800 °C and the oxidation process can be divided into two stages at temperature lower than 800 °C. At the earlier stage the gain rate of the weight oxidized in temperature range of 850 °C to 1,000 °C are extremely lower. The oxidation products having different surface microstructures and phase compositions were produced in oxidation reaction at different temperatures. The phase compositions of oxide scale formed at 1,000 °C are composed of Fe and Mn oxide without Cr. However, protective film of Cr oxide with complicated structure can be formed when the oxidation temperature is lower than 800 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Inoue, Y. Kojima, T. Minemura, T. Masumoto, Metall. Trans. A 12, 1245 (1981)

    Article  Google Scholar 

  2. D.J. Schmatz, Trans. Am. Soc. Met. 52, 898 (1960)

    Google Scholar 

  3. Y.G. Kim, J.K. Han, E.W. Lee, Metall. Trans. A 17, 2097 (1986)

    Article  Google Scholar 

  4. J. Charles, A. Berghezan, A. Lutts, P.L. Dancoisne, Metall. Progress. 119, 71 (1981)

    Google Scholar 

  5. S.H. Park, I.S. Chung, T.W. Kim, Oxid. Met. 49, 349 (1998)

    Article  Google Scholar 

  6. L.Q. Chen, Y. Zhao, X.M. Qin, Acta Metall. Sin. (Engl. Lett.) 26, 1 (2013)

    Article  Google Scholar 

  7. P.R.S. Jackson, G.R. Wallwork, Oxid. Met. 21(3–4), 135 (1984)

    Article  Google Scholar 

  8. P. Tomaszewicz, G.R. Wallwork, Corros. 40(4), 152 (1984)

    Article  Google Scholar 

  9. J.P. Sauer, R.A. Rapp, J.P. Hirth, Oxid. Met. 18(5–6), 285 (1982)

    Article  Google Scholar 

  10. H. Erhart, R. Wang, R.A. Rapp, Oxid. Met. 21(1–2), 81 (1984)

    Article  Google Scholar 

  11. C.H. Kao, C.M. Wan, J. Mater. Sci. 22, 3203 (1987)

    Article  Google Scholar 

  12. C.H. Kao, C.M. Wan, J. Mater. Sci. 23, 1943 (1988)

    Article  Google Scholar 

  13. V. Prakash, A.A. Krishnan, J. Sci. Ind. Res. B 15, 600 (1956)

    Google Scholar 

  14. P.R.S. Jackson, G.R. Wallwork, Oxid. Met. 21(3–4), 135 (1984)

    Article  Google Scholar 

  15. E.A. Gulbransen, K.F. Andrew, J. Electrochem. Soc. 109, 560 (1962)

    Article  Google Scholar 

  16. M.C. Li, H. Chang, P.W. Kao, D. Gan, Mater. Chem. Phys. 59, 96 (1999)

    Article  Google Scholar 

  17. M.S. Chen, H.C. Cheng, C.F. Huang, C.Y. Chao, K.L. Ou, C.H. Yu, Mater. Charact. 61, 206 (2010)

    Article  Google Scholar 

  18. C.J. Wang, Y.C. Chang, Mater. Chem. Phys. 76, 151 (2002)

    Article  Google Scholar 

  19. S.C. Chang, Y.H. Hsiau, M.T. Jahn, J. Mater. Sci. 24, 1117 (1989)

    Article  Google Scholar 

  20. J.W. Lee, C.C. Wu, T.F. Liu, Scr. Mater. 50, 1389 (2004)

    Article  Google Scholar 

  21. J.W. Lee, J.G. Duh, S.Y. Tsai, Surf. Coat. Technol. 153, 59 (2002)

    Article  Google Scholar 

  22. Z.J. Luo, L.P. Wang, S.J. Li, L.F. Wang, M. Wang, Min. Met. 22(suppl), 64 (2013)

    Google Scholar 

  23. S.H. Park, I.S. Chung, T.W. Kim, Oxid. Met. 49, 349 (1998)

    Article  Google Scholar 

  24. P. Pérez, F.J. Pérez, C. Gómez, P. Adeva, Corros. Sci. 44, 113 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National High Technology Research and Development Program of China (No. 2012AA03A508) and the National Natural Science Foundation of China (No. 51271051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Yao, Y. & Chen, L. High-temperature Oxidation Behavior of a High Manganese Austenitic Steel Fe–25Mn–3Cr–3Al–0.3C–0.01N. Acta Metall. Sin. (Engl. Lett.) 27, 401–406 (2014). https://doi.org/10.1007/s40195-014-0071-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0071-1

Keywords

Navigation