Skip to main content
Log in

Effect of rotational speed and double-sided welding in friction stir–welded dissimilar joints of aluminum alloy and steel

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The effect of tool rotational speed and double-sided welding in friction stir welding of aluminum alloy AA5083 and GL A36 steel was investigated. Defect-free joints were obtained in single- and double-sided welding using a rotational speed of 300 rpm. The increase in rotational speed or the application of double-sided welding increased the amount of dispersed steel particles in the aluminum stir zone, which stimulated void formation in the joint. In spite of the grain refinement in the stir zone, hardness is similar for all weld zones of the aluminum alloy, increasing significantly just in the steel near the weld interface due to severe work hardening. Besides this, the studied rotational speeds and double-sided welding did not exert any significant influence on the tensile strength of the joints, despite that a symmetric joint configuration with the welding through the full material thickness is guaranteed in the double-sided welding. The formation of intermetallic compound (IMC) layers is observed due to interdiffusion in the aluminum/steel interface. Investigations via scanning electron microscopy and energy-dispersive X-ray spectroscopy reveal that the IMC layer with 300–400 nm thickness is composed of Fe2Al5 or FeAl3 throughout the entire weld interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This implies that the end point of the first welding pass (exit hole) represents the start point for the second welding pass (plunge position).

References

  1. Chen T (2009) Process parameters study on FSW joint of dissimilar metals for aluminum-steel. J Mater Sci 44:2573–2580. https://doi.org/10.1007/s10853-009-3336-8

    Article  CAS  Google Scholar 

  2. Witik RA, Payet J, Michaud V, Ludwig C, Manson JAE (2011) Assessing the life cycle and environmental performance of lightweight materials in automobile applications. Compos Part A 42:1694–1709. https://doi.org/10.1016/j.compositesa.2011.07.024

    Article  CAS  Google Scholar 

  3. European Aluminium Association (2016) Aluminum content in cars. Ducker Worldwide. https://european-aluminium.eu/media/1721/european-aluminium-ducker-study-summary-report_sept.pdf. Accessed 24 June 2022

  4. Martinsen K, Hu SJ, Carlson BE (2015) Joining of dissimilar materials. CIRP Ann – Manuf Technol 64:679–699. https://doi.org/10.1016/j.cirp.2015.05.006

    Article  Google Scholar 

  5. Gullino A, Matteis P, D’Aiuto F (2019) Review of aluminum-to-steel welding technologies for car-body applications. Metals 9:315. https://doi.org/10.3390/met9030315

    Article  CAS  Google Scholar 

  6. Mandal NR (2017) Solid State Welding. In: Mandal NR (ed) Ship Construction and Welding, vol 2. Springer Singapore, pp 221–234. https://doi.org/10.1007/978-981-10-2955-4_16

  7. Taban E, Gould JE, Lippold JC (2010) Dissimilar friction welding of 6061–T6 aluminum and AISI 1018: Properties and microstructural characterization. Mater Des 31:2305–2311. https://doi.org/10.1016/j.matdes.2009.12.010

    Article  CAS  Google Scholar 

  8. Kusuda Y (2013) Honda develops robotized FSW technology to weld steel and aluminum and applied it to a mass-production vehicle. Ind Robot 40:208–212. https://doi.org/10.1108/01439911311309889

    Article  Google Scholar 

  9. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  10. Prater T (2011) Solid-state joining metal matrix composites: a survey of challenges and potential solutions. Mater Manuf Process 26:636–648. https://doi.org/10.1080/10426914.2010.492055

    Article  CAS  Google Scholar 

  11. Mehta KP (2019) A review on friction-based joining of dissimilar aluminum-steel joints. J Mater Res 34:78–96. https://doi.org/10.1557/jmr.2018.332

    Article  CAS  Google Scholar 

  12. Habibnia M, Shakeri M, Nourouzi S, Givi MKB (2015) Microstructural and mechanical properties of friction stir welded 5050 Al alloy and 304 stainless steel plates. Int J Adv Manuf Technol 76:819–829. https://doi.org/10.1007/s00170-014-6306-5

    Article  Google Scholar 

  13. Kimapong K, Watanabe T (2004) Friction stir welding of aluminum alloy to steel. Weld J 83:277S-282S

    Google Scholar 

  14. Liu X, Lan S, Ni J (2014) Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater Des 59:50–62. https://doi.org/10.1016/j.matdes.2014.02.003

    Article  CAS  Google Scholar 

  15. Ye Z, Huang J, Gao W, Zhang Y, Cheng Z, Chen S, Yang J (2017) Microstructure and mechanical properties of 5052 aluminum alloy/mild steel butt joint achieved by MIG-TIG double-sided arc welding-brazing. Mater Des 123:69–79. https://doi.org/10.1016/j.matdes.2017.03.039

    Article  CAS  Google Scholar 

  16. Lyu X, Li M, Li X, Chen J (2018) Double-sided friction stir spot welding of steel and aluminum alloys sheets. Int J Adv Manuf Technol 96:2875–2884. https://doi.org/10.1007/s00170-018-1710-x

    Article  Google Scholar 

  17. Ram Kumar A, Varghese S, Sivapragash M (2012) A comparative study of the mechanical properties of single and double sided friction stir welded aluminium joints. Procedia Eng 38:3951–3961. https://doi.org/10.1016/j.proeng.2012.06.452

    Article  CAS  Google Scholar 

  18. Mehra S, Dhanda P, Khanna R, Goyat NS, Verma S (2012) Effect of tool on tensile strength in single and double sided friction stir welding. Int J Sci Eng Res 3:221–226

    Google Scholar 

  19. Threadgill PL, Ahmed MMZ, Martin JP, Perrett JG, Wynne BP (2010) The use of bobbin tools for friction stir welding of aluminium alloys. Mater Sci Forum 638–642:1179–1184. https://doi.org/10.4028/www.scientific.net/MSF.638-642.1179

    Article  CAS  Google Scholar 

  20. Landell RM, de Lima Lessa CR, Bergmann L, dos Santos JF, Kwietniewski CEF, Klusemann B (2021) Investigation of friction stir welding process applied to ASTM 572 steel plate cladded with Inconel®625. Weld World 65:393–403. https://doi.org/10.1007/s40194-020-01007-w

    Article  CAS  Google Scholar 

  21. Yazdipour A, Heidarzadeh A (2016) Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083–H321 and 316L stainless steel alloy joints. J Alloys Compd 680:595–603. https://doi.org/10.1016/j.jallcom.2016.03.307

    Article  CAS  Google Scholar 

  22. Watanabe T, Takayama H, Yanagisawa A (2006) Joining of aluminum alloy to steel by friction stir welding. J Mater Process Technol 178:342–349. https://doi.org/10.1016/j.jmatprotec.2006.04.117

    Article  CAS  Google Scholar 

  23. Coelho RS, Kostka A, dos Santos JF, Pyzalla AR (2008) EBSD technique visualization of material flow in aluminum to steel friction-stir dissimilar welding. Adv Eng Mater 10:1127–1133. https://doi.org/10.1002/adem.200800227

    Article  CAS  Google Scholar 

  24. Xiong JT, Li JL, Qian JW, Zhang FS, Huang WD (2012) High strength lap joint of aluminium and stainless steels fabricated by friction stir welding with cutting pin. Sci Technol Weld Joi 17:196–201. https://doi.org/10.1179/1362171811Y.0000000093

    Article  CAS  Google Scholar 

  25. Wang X, Pan Y, Lados D (2018) Friction stir welding of dissimilar Al/Al and Al/Non-Al alloys: a review. Metall Mater Trans B 49:2097–2117. https://doi.org/10.1007/s11663-018-1290-z

    Article  CAS  Google Scholar 

  26. Batistão BF, Bergmann L, Gargarella P, Alcantara NG, dos Santos JF, Klusemann B (2020) Characterization of dissimilar friction stir lap joints of AA5083 and GL D36 steel. J Mater Research Technol 9(6):15132–15142. https://doi.org/10.1016/j.jmrt.2020.10.078

    Article  CAS  Google Scholar 

  27. Derazkola HA, Elyasi M, Hossienzadeh M (2014) Feasibility study on aluminum alloys and A441 AISI steel joints by friction stir welding. Int J Adv Des Manuf Technol 7:99–109

    Google Scholar 

  28. Ramachandran KK, Murugan N, Shashi Kumar S (2015) Effect of tool axis offset and geometry of tool pin profile on the characteristics of friction stir welded dissimilar joints of aluminum alloy AA5052 and HSLA steel. Mater Sci Eng A 639:219–233. https://doi.org/10.1016/j.msea.2015.04.089

    Article  CAS  Google Scholar 

  29. Chen ZW, Yazdanian S, Littleffair G (2013) Effects of tool positioning on joint interface microstructure and fracture strength of friction stir lap Al-to-steel welds. J Mater Sci 48:2624–2634. https://doi.org/10.1007/s10853-012-7056-0

    Article  CAS  Google Scholar 

  30. Elrefaey A, Gouda M, Takahashi M, Ikeuchi K (2005) Characterization of aluminum-steel lap joint by friction stir welding. J Mater Eng Perform 14:10–17. https://doi.org/10.1361/10599490522310

    Article  CAS  Google Scholar 

  31. Chen YC, Nakata K (2008) Effect of the surface state of steel on the microstructure and mechanical properties of dissimilar metal lap joints of aluminum and steel by friction stir welding. Metall Mater Trans A 39:1985–1992. https://doi.org/10.1007/s11661-008-9523-4

    Article  CAS  Google Scholar 

  32. Kimapong K, Watanabe T (2005) Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel. Mater Trans 46:2211–2217. https://doi.org/10.2320/matertrans.46.2211

    Article  CAS  Google Scholar 

  33. Springer H, Kostka A, Payton EJ, Raabe D, Kaysser-Pyzalla A, Eggeler G (2011) On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater 59:1586–1600. https://doi.org/10.1016/j.actamat.2010.11.023

    Article  CAS  Google Scholar 

  34. Rathod M, Kutsuna M (2004) Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld J 83:16S-26S

    Google Scholar 

  35. Scotto D’Antuono D, Gaies J, Golumbfskie W, Taheri ML (2017) Direct measurement of the effect of cold rolling on β phase precipitation kinects in 5xxx series aluminum alloys. Acta Mater 123:264–271. https://doi.org/10.1016/j.actamat.2016.10.060

    Article  CAS  Google Scholar 

  36. Yan J, Hodge AM (2017) Study of β precipitation and layer structure formation in Al 5083: The role of dispersoids and grain boundaries. J Alloys Compd 703:242–250. https://doi.org/10.1016/j.jallcom.2017.01.360

    Article  CAS  Google Scholar 

  37. Lombard H, Hatting DG, Steuwer A, James MN (2008) Optimising FSW process parameters to minimise defects and maximise fatigue life in 5083–H321 aluminum alloy. Eng Fract Mech 75:341–354. https://doi.org/10.1016/j.engfracmech.2007.01.026

    Article  Google Scholar 

  38. Dehghani M, Akbari Mousavi AA, Amadeh A (2013) Effects of welding parameters and tool geometry on properties of 3003–H18 aluminum alloy to mild steel friction stir weld. Trans Nonferrous Met Soc China 23:1957–1965. https://doi.org/10.1016/S1003-6326(13)62683-7

    Article  CAS  Google Scholar 

  39. Li B, Zhang Z, Shen Y, Hu W, Luo L (2014) Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: influences of process variables on the weld interface and tensile properties. Mater Des 53:838–848. https://doi.org/10.1016/j.matdes.2013.07.019

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the support of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior — Brasil (CAPES) — Finance Code 001. The authors also thank the grant #2019/04613–3, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruna Fernanda Batistão.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, L.A., Batistão, B.F., de Alcântara, N.G. et al. Effect of rotational speed and double-sided welding in friction stir–welded dissimilar joints of aluminum alloy and steel. Weld World 66, 1747–1756 (2022). https://doi.org/10.1007/s40194-022-01333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01333-1

Keywords

Navigation