Skip to main content
Log in

Numerical study of thermo-mechanical responses in laser transmission welding of polymers using a 3-D thermo-elasto-viscoplastic FE model

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This paper presents a numerical study on the evolution of thermal and thermo-mechanically induced stress field during heating and cooling phases of laser transmission welding of polymers. A 3-D transient thermo-mechanical model is designed to simulate the laser transmission contour welding with a moving laser beam. Sequential coupled field analysis is performed in which the temperature results of the thermal model are added to the related mechanical model. Thermal phenomena like heat conduction, convection and radiation, and thermo-physico-mechanical properties of polymer varying with temperature are implemented in the numerical simulation. The stress–strain relationship of the polymer is defined by a multilinear isotropic hardening model that integrates the von Mises yield criteria, the associative flow rule, and the isotropic hardening law. Viscoplastic effect of polymers is included in the FE model by implementing Perzyna’s rate-dependent plasticity model in ANSYS®. The developed model is used for prediction of the temperature distribution and residual stresses in three-dimensional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the manuscript. Missing data, if any, that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Software application (ANSYS®) and developed subroutine in APDL (ANSYS® Parametric Design Language).

References

  1. da Costa AP, Botelho EC, Costa ML, Narita NE, Tarpani R (2012) A review of welding technologies for thermoplastic composites in aerospace applications. J Aerosp Technol Manag 4(3):255–265

    Article  Google Scholar 

  2. Phuong HC, Jung TN, In B (2019) Laser transmission welding and surface modification of graphene film for flexible supercapacitor applications. Appl Surf Sci 483(31):481–488

    Google Scholar 

  3. Villar M, Chabert F, Garnier C, Nassiet V, Diez JC, Sotelo A, Madre MA, Duchesne C, Cussac P (2016) Laser transmission welding as an assembling process for high temperature electronic packaging. Proc. ESARS-ITEC ‘2016, Toulouse, France, pp 1–5

  4. Amanat N, Chaminade C, Grace J, McKenzie DR, James NL (2010) Transmission laser welding of amorphous and semi-crystalline poly-ether–ether–ketone for applications in the medical device industry. Mater Des 31:4823–4830

    Article  CAS  Google Scholar 

  5. Gough Z, Chaminade C, Monteith PB, Kallinen A, Lei W, Ganesan R, Grace J, McKenzie DR (2017) Laser fabrication of electrical feedthroughs in polymer encapsulations for active implantable medical devices. Med Eng Phys 42:105–110

    Article  Google Scholar 

  6. Pfleging W, Baldus O (2006) Laser patterning and welding of transparent polymers for microfluidic device fabrication. Proc SPIE 6107:610705

    Article  CAS  Google Scholar 

  7. Borge M (2016) Transmission laser welding of large plastic components: lightweight automotive constructions require quantum jumps in technology. Laser Tech J 13(5):34–37

    CAS  Google Scholar 

  8. Kagan V (2002) Innovations in laser welding of thermoplastics: this advanced technology is ready to be commercialized. SAE Trans J Mater Manuf 111:845–864

    Google Scholar 

  9. Acherjee B, Kuar AS, Mitra S, Misra D (2010) Selection of process parameters for optimizing the weld strength in laser transmission welding of acrylics. Proc Inst Mech Eng B-J Eng Manuf 224(B10):1529–1536

    Article  Google Scholar 

  10. Bachmann FG, Russek UA (2002) Laser welding of polymers using high power diode lasers. Proc SPIE 4637:505–518

    Article  CAS  Google Scholar 

  11. Prabhakaran R, Kontopoulou M, Zak G, Bates PJ, Baylis BK (2006) Contour laser—laser-transmission welding of glass reinforced nylon 6. J Thermoplast Compos Mater 19:427–439

    Article  CAS  Google Scholar 

  12. Wu CY, Douglass DM (2004) Fiber laser welding of elastomer to TPO. Proc. SPE ANTEC ‘2004, Chicago, IL, USA, pp 1227–1230

  13. Acherjee B (2020) Laser transmission welding of polymers—a review on process fundamentals, material attributes, weldability, and welding techniques. J Manuf Process 60:227–246

    Article  Google Scholar 

  14. Acherjee B (2021) Laser transmission welding of polymers—a review on welding parameters, quality attributes, process monitoring, and applications. J Manuf Process 64:421–443

    Article  Google Scholar 

  15. Acherjee B (2021) State-of-art review of laser irradiation strategies applied to laser transmission welding of polymers. Opt Laser Technol 137:106737

    Article  CAS  Google Scholar 

  16. Wang X, Song X, Jiang M, Li P, Hu Y, Wang K, Liu H (2012) Modeling and optimization of laser transmission joining process between PET and 316L stainless steel using response surface methodology. Opt Laser Technol 44:656–663

    Article  CAS  Google Scholar 

  17. Acherjee B, Kuar AS, Mitra S, Misra D (2015) Empirical modeling and multi-response optimization of laser transmission welding of polycarbonate to ABS. Lasers Manuf Mater Process 2:103–131

    Article  Google Scholar 

  18. Grewell D, Rooney P, Kagan VA (2004) Relationship between optical properties and optimized processing parameters for through-transmission laser welding of thermoplastics. J Reinf Plast Comp 23(3):239–247

    Article  CAS  Google Scholar 

  19. Xu XF, Parkinson A, Bates PJ, Zak G (2015) Effect of part thickness, glass fiber and crystallinity on light scattering during laser transmission welding of thermoplastics. Opt Laser Technol 75:123–131

    Article  CAS  Google Scholar 

  20. Acherjee B, Misra D, Bose D, Venkadeshwaran K (2009) Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology. Opt Laser Technol 41(8):956–967

    Article  Google Scholar 

  21. Ghasemi H, Zhang Y, Bates PJ, Zak G, Du Quesnay DL (2018) Effect of processing parameters on meltdown in quasi-simultaneous laser transmission welding. Opt Laser Technol 107:244–252

    Article  CAS  Google Scholar 

  22. Roesner A, Abels P, Olowinsky A, Matsuo N, Hino A (2008) Absorber-free laser beam welding of transparent thermoplastics. ICALEO 2008(1):M303

    Google Scholar 

  23. Boglea A, Olowinsky A, Gillner A (2007) Twist—a new method for the micro-welding of polymers with fibre lasers. ICALEO 2007(1):M601

    Google Scholar 

  24. Geiger R, Brandmayer O, Brunnecker F, Korson C (2009) Hybrid laser welding of polymers. Proc. SPE ACCE ‘2009, 1 pp 535–541

  25. Katayama S, Kawahito Y (2008) Laser direct joining of metal and plastic. Scr Mater 59:1247–1250

    Article  CAS  Google Scholar 

  26. Acherjee B, Kuar AS, Mitra S, Misra D (2012) Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: a FEM study. Opt Laser Technol 44(3):514–521

    Article  CAS  Google Scholar 

  27. Potente H, Korte J, Becker F (1999) Laser transmission welding of thermoplastics: analysis of heating phase. J Reinf Plast Compos 18(10):914–920

    Article  CAS  Google Scholar 

  28. Kurosaki Y, Matayoshi T, Sato K (2003) Overlap welding of thermoplastic parts without causing surface thermal damage by using CO2 laser. Proc. SPE ANTEC ‘2003, Nashville, TN USA, 1, pp1121–1125.

  29. Russek UA, Aden M, Pöhler J (2005) Laser beam welding of thermoplastics experiments, thermal modelling and predictions, Proc. Int. 3rd WLT – Conf. Laser. Manuf. ‘2005, Munich, Germany, pp 85–89

  30. Hadriche I, Ghorbel E, Masmoudi N, Casalino G (2010) Investigation on the effects of laser power and scanning speed on polypropylene diode transmission welds. Int J Adv Manuf Technol 50(1–4):217–226

    Article  Google Scholar 

  31. Hopmann C, Kreimeier S (2016) Modelling the heating process in simultaneous laser transmission welding of semicrystalline polymers. J Polym 2016:3824065

    Google Scholar 

  32. Aden M (2016) Influence of the laser-beam distribution on the seam dimensions for laser-transmission welding: a simulative approach. Lasers Manuf Mater Process 3(2):100–110

    Article  Google Scholar 

  33. Mayboudi LS, Birk AM, Zak G, Bates PJ (2007) Laser transmission welding of a lap-joint: thermal imaging observations and three–dimensional finite element modeling. J Heat Tran 129:1177–1186

    Article  CAS  Google Scholar 

  34. Mayboudi LS, Birk AM, Zak G, Bates PJ (2009) A three-dimensional thermal finite element model of laser transmission welding for lap-joint. Int J Model Simul 29(2):149–155

    Article  Google Scholar 

  35. Ilie M, Cicala E, Grevey D, Mattei S, Stoica V (2009) Diode laser welding of ABS: experiments and process modeling. Opt Laser Technol 41(5):608–614

    Article  CAS  Google Scholar 

  36. Acherjee B, Kuar AS, Mitra S, Misra D (2012) Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Opt Laser Technol 44(4):995–1006

    Article  CAS  Google Scholar 

  37. Wang X, Chen H, Liu H, Li P, Yan Z, Huang C, Zhao Z, Gu Y (2013) Simulation and optimization of continuous laser transmission welding between PET and titanium through FEM, RSM, GA and experiments. Opt Lasers Eng 51:1245–1254

    Article  Google Scholar 

  38. Wang X, Chen H, Liu H (2014) Investigation of the relationships of process parameters, molten pool geometry and shear strength in laser transmission welding of polyethylene terephthalate and polypropylene. Mater Des 55:343–352

    Article  CAS  Google Scholar 

  39. Liu H, Liu W, Meng D, Wang X (2016) Simulation and experimental study of laser transmission welding considering the influence of interfacial contact status. Mater Des 92:246–260

    Article  CAS  Google Scholar 

  40. Chen Z, Huang Y, Han F, Tang D (2018) Numerical and experimental investigation on laser transmission welding of fiberglass-doped PP and ABS. J Manuf Process 31:1–8

    Article  Google Scholar 

  41. Acherjee B (2019) 3-D FE heat transfer simulation of quasi-simultaneous laser transmission welding of thermoplastics. J Braz Soc Mech Sci Eng 41:466

    Article  CAS  Google Scholar 

  42. Acherjee B (2021) Laser transmission welding of dissimilar plastics: 3-D FE modeling and experimental validation. Weld World 65:1429–1440

    Article  CAS  Google Scholar 

  43. Xu W, Li P, Liu H, Wang H, Wang X (2022) Numerical simulation of molten pool formation during laser transmission welding between PET and SUS304. Int Commun Heat Mass Transf 131:105860

    Article  CAS  Google Scholar 

  44. Potente H, Fiegler G (2004) Laser transmission welding of thermoplastics—modelling of flows and temperature profiles. Proc. SPE ANTEC ‘2004, Chicago, IL, USA, pp 1193–1199

  45. Van de Ven JD, Erdman AG (2007) Bridging gaps in laser transmission welding of thermoplastics. J Manuf Sci Eng 129:1011–1018

    Article  Google Scholar 

  46. Shaban A, Mahnken R, Wilke L, Potente H, Ridder H (2007) Simulation of rate dependent plasticity for polymers with asymmetric effects. Int J Solids Struct 44:6148–6162

    Article  CAS  Google Scholar 

  47. Lakemeyer P, Schöppner V (2019) Simulation-based investigation on the temperature influence in laser transmission welding of thermoplastics. Weld World 63(2):221–228

    Article  Google Scholar 

  48. Schmailzl A, Hierl S, Schmidt M (2016) Gap-bridging during quasi-simultaneous laser transmission welding. Phys Procedia 83:1073–1082

    Article  CAS  Google Scholar 

  49. Casalino G, Ghorbel E (2008) Numerical model of CO2 laser welding of thermoplastic polymers. J Mater Process Technol 207:63–71

    Article  CAS  Google Scholar 

  50. Sooriyapiragasam SK, Hopmann C (2016) Modeling of the heating process during the laser transmission welding of thermoplastics and calculation of the resulting stress distribution. Weld World 60:777–791

    Article  CAS  Google Scholar 

  51. Hopmann C, Bölle S, Kreimeier S (2019) Modeling of the thermally induced residual stresses during laser transmission welding of thermoplastics. Weld World 63:1417–1429

    Article  CAS  Google Scholar 

  52. ANSYS® Academic Research, Release 10.0, ANSYS, Inc. Theory Reference. 2005, Southpointe: ANSYS, Inc

  53. Acherjee B, Kuar AS, Mitra S, Misra D (2013) Finite element simulation of laser transmission thermoplastic welding of circular contour using a moving heat source. Int J Mechatron Manuf Syst 6(5/6):437–454

    Google Scholar 

  54. Kagan VA, Bray RG, Phino GP (2000) Welding with light, Machine Design, https://www.machinedesign.com/archive/article/21815428/welding-with-light. Accessed 8 Nov 2015.

  55. Schkutow A, Frick T (2016) Influence of adapted wavelengths on temperature fields and melt pool geometry in laser transmission welding. Phys Procedia 83:1055–1063

    Article  CAS  Google Scholar 

  56. ANSYS® Academic Research, Release 10.0, Element Reference. Southpointe: ANSYS, Inc

  57. Mayboudi LS, Birk AM, Zak G, Bates PJ (2005) A 2-d thermal model for laser transmission welding of thermoplastics. Proc. 24th International Congress on Applications of Lasers & Electro-Optics, Miami, FL, USA, pp 402–409

  58. Mitchell M (2000) Design and microfabrication of a molded polycarbonate continuous flow polymerase chain reaction device. Master thesis, Louisiana State University

  59. CAMPUS®: computer aided material preselection by uniform standards. http://www.campusplastics.com/campus/polymers. Accessed 14 May 2019

  60. ANSYS® Academic Research, Release 10.0, Structural Analysis Guide. Southpointe: ANSYS, Inc

  61. Datasheet of Makrolon® 2605, Material Data Center, https://www.materialdatacenter.com/ms/en/Makrolon/Covestro+Deutschland+AG/Makrolon%C2%AE+2605/7e650cd9/410/3/0. Accessed 2 Jan 2019.

  62. IDES- The plastics web®http://www.ides.com/property_descriptions/ISO527-1-2.asp. Accessed 18 Apr 2016.

  63. Hoy RS, O’Hern CS (2010) Viscoplasticity and large-scale chain relaxation in glassy-polymeric strain hardening. Phys Rev E 82:041803-1–41810

    Article  CAS  Google Scholar 

  64. Fu S, Wang Y, Wang Y (2009) Tension testing of polycarbonate at high strain rates. Polym Test 28:724–729

    Article  CAS  Google Scholar 

  65. Acherjee B, Kuar AS, Mitra S, Misra D (2012) Modeling of laser transmission contour welding process using FEA and DoE. Opt Laser Technol 44(5):1281–1289

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sole authorship.

Corresponding author

Correspondence to Bappa Acherjee.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVI—Polymer Joining and Adhesive Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acherjee, B. Numerical study of thermo-mechanical responses in laser transmission welding of polymers using a 3-D thermo-elasto-viscoplastic FE model. Weld World 66, 1421–1435 (2022). https://doi.org/10.1007/s40194-022-01300-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-022-01300-w

Keywords

Navigation