Skip to main content
Log in

Creep and fracture behavior of long-annealed weld HAZ in CB2 steel

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

CB2 steel for thick castings has been designed and investigated in the frame of COST-522 and C0ST-536 R&D actions of EU to work at supercritical conditions of the steam main lines. The steel exhibits loss of impact strength and hardness after long annealing and also of strength and life when creep tested after the long annealing. The most serious decrease of properties appears in weld’s heat-affected zones during the creep tests. Differences in microstructures of base metal (BM) and weld’s heat-affected zone (HAZ) have been studied in initial state and after long-term annealing/aging for 10 kh and 30 kh at 625 °C, followed by creep testing. The initial as-cast microstructure of CB2 is inhomogeneous, and the welding thermal cycle causes additional separation of phases in the intercritical region. TEM observations revealed appearance in HAZ of large ferrite grains between compact colonies of spheroidal carbides, associated with the decrease of creep strength and life in the HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig.30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig.40
Fig. 41
Fig.42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 52
Fig. 51

Similar content being viewed by others

References

  1. Garrison WM (2012) Cobalt and the toughness of steel. Mater Sci Forum. https://doi.org/10.4028/www.scientific.net/M5F.710.3

  2. Abe F et al (2007) Suppression of type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition. Int J Press Vessel Pip 84:44

    Article  CAS  Google Scholar 

  3. Stoloff N, Davies R, Ku R (1965) Low-temperature yielding and fracture in Fe-Co and Fe-V alloys. Trans Met Soc AIME 233:1500

    CAS  Google Scholar 

  4. Keh AS, Weissmann S (1963) Dislocation substructure in body-centered cubic metals. In: Thomas G, Washburn J (eds) Electron microscopy and strength of crystals. Interscience, New York, p 231

    Google Scholar 

  5. Leslie WC, Hornbogen E, Dieter GF (1962) The structure of shock-hardened iron before and after annealing. J Iron Steel Inst 200:622

    CAS  Google Scholar 

  6. Sleeswyk AW, Mandziej ST (1990) Mobility of <001> dislocations and formation of cleavage nuclei. Scr Met Mater 24(1):7

    Article  CAS  Google Scholar 

  7. Mandziej ST, Vyrostkova A (2008) Relation between microstructure and fracture mode of new Cr-Co-Mo/W-V-B creep resisting steel and weld. In: Proc IIW Int Conf “safety and reliability of welded components in energy and processing industry”, Graz, Austria, p 251

  8. Výrostková A et al (2010) Microstructure and fracture of 9%Cr-Mo-Co-B steel (CB2) weldment after isothermal ageing. In: Proc Int Conf METAL 2010, Rožnov pod Radhoštěm, Czech Republic, p 409

  9. Dimmler G, Weinert P, Kozeschnik E, Cerjak H (2003) Quantification of the Laves phase in advanced 9-12% Cr steels using a standard SEM. Mater Charact 51:341

    Article  CAS  Google Scholar 

  10. Cipolla L, Danielsen HK et al (2009) Formation of Z-phase in 12% CrVNbN model steel. In: Shibli IA, Holdsworth SR (eds) Proc ECCC Conference, Zurich, p 863

  11. Hald J (2008) Microstructure and long-term creep properties of 9-12% Cr steels., Int J Pressure Vessels and Piping, 85/1-2: 30

  12. Mayr P, Martin FM et al (2009) Correlation of creep strength and microstructural evolution of a Boron Alloyed 9Cr3W3CoVNb steel in as-received and welded conditions, In: Shibli IA, Holdsworth SR (eds) Proc ECCC Conference, Zurich, p 1029

  13. Agamennon R, Blum W, Gupta C, Chakravatty JK (2006) Evolution of microstructure and deformation resistance in creep of tempered martensitic 9-12%Cr-2%W-5%Co steels. Acta Mater 54(11):3003

    Article  Google Scholar 

  14. Cipolla L, Danielsen HK et al (2010) On the role of Nb in Z-phase formation in a 12% Cr steel. Scr Mater 63(3):324

    Article  CAS  Google Scholar 

  15. Sawada K, Kushima H, Kimura K, Tabuchi M (2010) Z-phase formation and its effect on long-term creep strength in 9-12% Cr creep resistant steels. Trans Indian Inst Metals 63(2-3):117

    Article  CAS  Google Scholar 

  16. Abe F (2009) Heat-to-het variation in long-term creep strength of some ferritic steels. In: Shibli IA, Holdsworth SR (eds) Proc ECCC Conference, Zurich, p 5

  17. Hald J (2009) Status of the martensitic creep resistant 9-12% Cr steels, In: Shibli IA, Holdsworth SR (eds) Proc ECCC Conference, Zurich, p 3

  18. Panait CG, Bendick W et al (2010) Study of the microstructure of the grade 91 steel after more than 100,000 h of creep exposure at 600 °C. Int J Press Vessel Pip 87(6):326

    Article  CAS  Google Scholar 

  19. Výrostková A (2005) Case study in COST-538 action. IMR-SAS, Kosice SK, on http://www.cost.eu/ domains_actions/mpns/ Actions/ 538, unpublished

  20. Epicier T, Acevedo D, Perez M (2008) Crystallographic structure of vanadium carbide precipitates in a model Fe-C-V steel. Philos Mag 1(1):31

    Article  Google Scholar 

  21. Tabuchi M, Hongo H et al (2009) Effect of boron on creep strength of high Cr steel welds. In: Shibli IA, Holdsworth SR (eds) Proc ECCC Conference, Zurich, p 227

  22. Tabuchi M, Kondo M et al (2004) Improvement of type IV creep cracking resistance of 9Cr heat resisting steels by boron addition, OMMI, vol.3/3, www.ommi.co.uk

  23. Carrington W, Hale KF, McLean D (1960) Arrangement of dislocations in iron. Proc R Soc Lond A 259(1297):203

    Article  CAS  Google Scholar 

  24. Cottrell AH (1958) Theory of brittle fracture in steel and similar metals. Trans AIMME 212:192

    CAS  Google Scholar 

  25. Mandziej ST (1994) Development of dislocation substructure and fracture behaviour of HSLA steel. In: Oikawa H et al (eds) Strength of materials. The Japan Institute of Metals, Sendai, p 459

    Google Scholar 

  26. Baumgartner S et al (2015) Dissimilar welding of the creep resistant steels CB2 and P92 with flux cored wires. Weld World. https://doi.org/10.1007/s40194-015-0241-4

  27. Smith E (1968) Cleavage fracture in mild steel. Int J Fract Mech 4(2):131

    Article  Google Scholar 

  28. Bošanský J, Šmida T (2002) Deformation twins - probable inherent nuclei of cleavage fracture in ferritic steels. Mater Sci Eng A323:198

    Article  Google Scholar 

  29. Kasl J, Jandova D (2014) Metallography of CB2 steel used for cast turbine components. Mater Sci Forum 782:179

    Article  Google Scholar 

  30. Jandová D, Kasl J, Chvostová E (2014) Microstructure of CB2 steel before and after long-term creep tests. Mat Sci Forum 782:311

    Article  Google Scholar 

  31. Honeycombe RWK (1984) The plastic deformation of metals. E Arnold Publ, London

    Google Scholar 

  32. Mandziej ST (2017) Microstructures of heat-affected zones in Cr-Mo-V steels. IIW Doc II-C-514-17

  33. Korzekwa DA, Matlock DK, Krauss G (1984) Dislocation substructure as a function of strain in a dual-phase steel. Metall Trans A 15A:1221

    Article  CAS  Google Scholar 

  34. Speich GR (1981) Fundamentals of dual-phase steels, In: Kot RA, Bramfit BL (eds) Conf Proc TMS-AIME, Warrendale PA, p 3

Download references

Acknowledgments

Thanks of the authors are extended to Institute for Ferrous Metallurgy, Department of Process Simulation, Gliwice, Poland, for carrying-out fractographic observations in backscattered electron mode on field-emission scanning electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan T. Mandziej.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission II - Arc Welding and Filler Metals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandziej, S.T., Vyrostkova, A. Creep and fracture behavior of long-annealed weld HAZ in CB2 steel. Weld World 64, 573–590 (2020). https://doi.org/10.1007/s40194-020-00855-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-020-00855-w

Keywords

Navigation