Skip to main content
Log in

Factors influencing the fiber orientation in welding of fiber-reinforced thermoplastics

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In welding of fiber-reinforced thermoplastics, the welding pressure initiates squeeze flow of melt into the weld bead. This leads to reorientation of fibers into the flow direction. Therefore, the fibers in the weld are mainly oriented perpendicular to the joining direction. Since this is mostly identical to the load direction, the reinforcing effect of fibers is not effective in the weld because fibers only have a reinforcing effect on the polymer when they are aligned along the load direction. Current investigations at the Kunststofftechnik Paderborn (KTP) aim at reaching an effective reinforcing effect of fibers in the weld of fiber-reinforced thermoplastics. The experiments are carried out on polypropylene and polyamide. Three different grades of PP are used: unreinforced, short glass fiber-reinforced, and long glass fiber-reinforced PP with 30% fiber content each. The used grades of PA differ in viscosity and shear thinning behavior. Experiments are being conducted on influences on the weld strength and the fiber orientation in the weld for hot plate welding. Common welding parameters are varied. One aim of the investigations is to find a correlation between the flow velocity during squeeze flow and weld strength or fiber orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

a, b, c:

position of ROI’s in CT analysis

a xx, a yy, a zz :

component of orientation tensor

b :

width

CT:

computed tomography

d :

thickness

DP:

design point

DVS:

German Welding Association

\( \frac{dp}{dx} \) :

pressure gradient in x-direction

F :

joining force

f z :

welding factor

GF:

glass fiber-reinforced

h :

melt layer height

h 0 :

melt layer height at beginning of joining phase

HP:

hot plate (welding)

h residual :

melt layer height at end of joining phase

K :

flow consistency index

L 0 :

melt layer thickness after heating

n :

flow behavior index

P :

unit vector

PA:

polyamide

p F :

welding pressure

PP:

polypropylene

p x, p y, p z :

component of the unit vector P

ROI:

region of interest

s J :

joining displacement

T HP :

hot plate temperature

T M :

crystalline melt temperature

v J :

joining velocity

v x :

flow velocity in x-direction

v y :

joining velocity

x a, x b, x c :

position for calculation of flow velocity in squeeze flow

\( \dot{\gamma} \) :

shear rate

σW :

weld strength

References

  1. Ehrenstein GW (2006) Faserverbund-Kunststoffe – Werkstoffe – Verarbeitung – Eigenschaften. Carl Hanser Verlag, München, 2., völlig überarbeitete Auflage

  2. Menges G, Haberstroh E, Michaeli W, Schmachtenberg E (2002) Werkstoffkunde Kunststoffe. Carl Hanser Verlag, München

    Google Scholar 

  3. Schürmann H (2005) Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  4. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784, John Wiley & Sons

    Article  Google Scholar 

  5. Kamal, M. R.; Chung, Y.-M.; Gomez, R. (2008) Three-dimensional fiber orientation in vibration welded joints of glass fiber reinforced polyamide-6. Polym Compos, Vol. 20, No. 9, Wiley-VCH Verlag, Weinheim, pp. 954–963

  6. Bay, R. S.; Tucker, C. L.: Fiber orientation in simple injection moldings. Part II: experimental results. Polymer Composites, August 1992, Vol. 13, No. 4, Wiley-VCH Verlag, Weinheim, pp. 332–341, 1992

  7. Baudrit B (2014) Entwicklung innovativer Technologien zum Heizelementstumpf- und Infrarot-Schweißen von mineralgefüllten und faserverstärkten Kunststoffen. Forschungsbericht der SKZ - KFE gGmbH Kunststoff-Forschung und -Entwicklung zu dem AiF-geförderten Vorhaben 17303 N

  8. Bruessel A (1999) Fertigungstechnische und werkstoffspezifische Aspekte zum Fügen von Thermoplasten mittels Heizelement. Dissertation, Universität-Gesamthochschule Paderborn

  9. Kagan, V.: Optimized mechanical performance of welded and molded butt joints: part II – weld and knit lines integrity. J Reinf Plast Compos, Vol. 22, No. 09, Sage Publications, pp. 867–879, 2003

  10. Bucknall CB, Drinkwater IC, Smith GR (1980) Hot plate welding of plastics: factors affecting weld strength. Polym Eng Sci 20(6):432–440, Wiley-VCH Verlag, Weinheim

    Article  Google Scholar 

  11. Gehde M, Giese M, Ehrenstein GW (1997) Welding of thermoplastics reinforced with random glass mat. Polym Eng Sci 37(4):702–714, Wiley-VCH Verlag, Weinheim

    Article  Google Scholar 

  12. Potente, H., Natrop, J., Pedersen, T. K., Uebbing, M. (1993) Comparative investigations into the welding of glass-fiber-reinforced PES. J Thermoplast Compos Mater, Vol. 6, Sage Publications, pp. 147–159

  13. Kagan, V.; Bednarczyk, C.; Siu-Ching, L.; Smith, G. R. (1999) US-Patent 5.874.146: Performance of vibration welded thermoplastic joints

  14. Kagan V, Lui S, Smith G, Patry J (1996) The optimized performance of linear vibration welded nylon 6 and nylon 66 butt joints. ANTEC 96, SPE Proceedings 1:1266–1274

    Google Scholar 

  15. Shih-Jung, L.; Hsin-Fu, C.: The influence of interface geometry on the joint strengths of hot plate welded composites. Journal of Reinforced Plastics and Composites, Vol. 29, No. 4, pp. 497–509, 2010, Sage Publications

  16. Potente H (2004) Fügen von Kunststoffen – Grundlagen, Verfahren, Anwendung. Carl Hanser Verlag, München Wien

    Google Scholar 

  17. Kreiter J (1988) Optimierung der Schweißnahtfestigkeit von Heizelementstumpfschweißungen von Formteilen durch verbesserte Prozeßführung und Selbsteinstellung. Dissertation, Universität-Gesamthochschule Paderborn

  18. DVS (2010) Heizelementschweißen von Formteilen aus thermoplastischen Kunststoffen in der Serienfertigung. Richtlinie DVS 2215–1

  19. Dierig T, Becker B, Reinhart C, Günther T (2012) Fiber composite material analysis in aerospace using CT data. 4th International Symposium on NDT in Aerospace, 13.-15. Augsburg

  20. Radtke A (2008) Steifigkeitsberechnung von diskontinuierlich faserverstärkten Thermoplasten auf der Basis von Faserorientierungs- und Faserlängenverteilungen. Dissertation, Universität Stuttgart

  21. Potente H (1977) Zur Theorie de Heizelement-Stumfschweißens. Kunststoffe 67. Carl Hanser Verlag, München, pp 98–102

    Google Scholar 

Download references

Acknowledgements

The IGF Project 18702N of the research association “Forschungsvereinigung Schweißen und verwandte Verfahren e. V. des DVS. Aachener Straße 172. 40223 Düsseldorf” was, on the basis of a resolution of the German Bundestag, promoted by the German Ministry of Economic Affairs and Energy via AiF within the framework of the program for the promotion of joint industrial research and development (IGF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Fiebig.

Additional information

Recommended for publication by Commission XVI - Polymer Joining and Adhesive Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiebig, I., Schoeppner, V. Factors influencing the fiber orientation in welding of fiber-reinforced thermoplastics. Weld World 62, 997–1012 (2018). https://doi.org/10.1007/s40194-018-0628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0628-0

Keywords

Navigation