Skip to main content
Log in

Modeling of the heating process during the laser transmission welding of thermoplastics and calculation of the resulting stress distribution

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

At present, various welding techniques are used in many different process chains and steps. Moreover, when joining metallic materials, welding processes are used to create integrated material bonds of organic as well as inorganic materials. One of the methods used to join thermoplastics is laser transmission welding. In addition to the low heat introduced into the welded parts, high welding speed is one of the reasons why this process is used in industry. Highly accurate simulation of the heating process would improve understanding of the process, facilitate and reduce the time required for process installation in the long run, and provide a significant contribution for computer-aided component design. The quality of the weld line in laser transmission welded plastic parts is affected by material properties, machine parameters, and their interactions with each other. For these reasons, a thermal simulation model was developed as part of a research project due to support the operator of the laser transmission welding process in setting up the process faster and more reliably. First, the presented model considers the various interferences of the welding process by the material, the thermal, and optical properties which are often not known exactly enough. Second, interaction between the laser beam and the material was determined and implemented. The developed calculation model allows for highly reliable determination of the size of the heat affection zone. The exact process window can be identified and predicted. Furthermore, the heating and cooling process can be reproduced using the spatial temperature distribution, which allows cycle time to be optimized on the basis of these results. In addition to the impact on weld quality, residual stresses can be found in welded thermoplastic parts as a result of local thermal expansion and shrinkage. Especially, tensile stresses are undesired effects of the welding process because they can have an unfavorable impact on the local mechanical properties of the welded components. Mainly, in laser transmission welded parts, these tensile residual stresses occur in the weld seam. These tensile stresses can overlap with permitted operating stresses, and this may result in early failure of the component. This can take place, in particular, when the structural part is exposed to oscillating and/or highly corrosive stresses. These are the reasons why it is important to know the residual stresses introduced into the component, in order to minimize the distribution of these stresses by means of suitable process management. To calculate the mechanical behavior in the structural simulation of a welded part, precisely mapping the temperature field is of fundamental importance. Residual stresses and warping are directly based on the temperature field. Based on thermal calculations, the paper presents thermo-mechanical simulations for the determination of residual stress distribution in the weld seam, depending on the welding parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Klein J, Kraus A (2004) Is plastic laser welding economical? Kunststoffe International 94(7):49–51

    Google Scholar 

  2. Lenfert K, Hierl S, Brunnecker F (2002) Schritt für Schritt oder alles zugleich. Plastverarbeiter 53(5):34–35

    Google Scholar 

  3. Geißelmann B, Hierl S, Lenfert K (2004) Perfekt verschlossen. Plastverarbeiter 55(11):74–75

    Google Scholar 

  4. Ackermann J, Devrient M, Frick T (2009) Laser transmission welding—the morphology as the key to the successful process design. Joining Plastics - Fügen von Kunststoffen 3(2):94–104

    Google Scholar 

  5. Lützeler R (2005) Laser transmission welding of semi-crystalline thermoplastics. Dissertation, RWTH Aachen, ISBN: 3-86130-842-8

  6. Glaser S (2009) Farbmittel und Additive in Kunststoffen für das Laserdurchstrahlschweißen. lecture notes of the workshop “Laserschweißen von Kunststoffen - Vom Makroteil zum Mikroteil”. Würzburg

  7. Schnaiker A (2010) Prozesssicherheit beim Laserdurchstrahlschweißen von Kunststoffen. lecture notes of the workshop “Laserschweißen von Kunststoffen - Vom Makroteil zum Mikroteil”. Würzburg

  8. Kennish YC (2003) Development and modelling of a new laser welding process for polymers. Dissertation, University of Cambridge

  9. Klein H (2001) Laserschweißen von Kunststoffen in der Mikrotechnik. Dissertation, RWTH Aachen

  10. Korte J (1998) Laserschweißen von Thermoplasten. Dissertation, Universität-GH Paderborn

  11. Kennish YC, Shercliff HR, McGrath GC (2002) Heat flow model for laser welding of polymers. Proceedings of the 60th Annual Technical Conference of the Society of Plastics Engineers. San Francisco

  12. Schulz J (2002) Werkstoff-, Prozess- und Bauteiluntersuchungen zum Laserdurchstrahlschweißen von Kunststoffen. Dissertation, RWTH Aachen

  13. Russek UA (2006) Prozesstechnische Aspekte des Laserdurchstrahlschweißens von Thermoplasten. Dissertation, RWTH Aachen

  14. Acherjee B, Kuar A, Mitra S, Misra D (2012) Modeling of laser transmission contour welding process using FEA and DoE. Opt Laser Technol 4(5):1281–1289

    Article  Google Scholar 

  15. Becker F (2003) Einsatz des Laserdurchstrahlschweißens zum Fügen von Thermoplasten. Dissertation, Universität-GH Paderborn

  16. Fiegler G (2007) Ein Beitrag zum Prozessverständnis des Laserdurchstrahlschweißens von Kunststoffen anhand der Verfahrensvarianten Quasi-Simultan- und Simultanschweißen. Dissertation, Universität Paderborn

  17. Frick T (2007) Untersuchung der prozessbestimmenden Strahl-Stoff-Wechselwirkungen beim Laserstrahlschweißen von Kunststoffen. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg

  18. Fargas M, Wilke L, Meier O, Potente H (2007) Analysis of weld seam quality for laser transmission welding of thermoplastics based on fluid dynamical processes. Proceedings of the 65th Annual Technical Conference of the Society of Plastics Engineers. Cincinatti

  19. Grewell D, Benatar A (2008) Semiempirical, squeeze flow, and intermolecular diffusion model. II. Model verification using laser microwelding. Polym Eng Sci 48(8):1542–1549

    Article  Google Scholar 

  20. Ilie M, Kneip JC, Mattei S, Nichici A, Roze C, Girasole T (2007) Through-transmission laser welding of polymers—temperature field modeling and infrared investigation. Infrared Phys Technol 51:73–79

    Article  Google Scholar 

  21. Mayboudi LS, Birk AM, Zak G, Bates PJ (2007) Laser transmission welding of a lap-joint: thermal imaging observations and three-dimensional finite element modelling. J Heat Transf 129(8):1177–1186

    Article  Google Scholar 

  22. Mayboudi LS, Birk AM, Zak G, Bates PJ (2009) Infrared observations and finite element modeling of a laser transmission welding process. J Laser Appl 21(3):111–118

    Article  Google Scholar 

  23. Zoubeir T, Ghorbel E (2011) Numerical study of laser diode transmission welding of a polypropylene mini-tank: temperature field and residual stresses distribution. Polym Test 30(1):23–34

    Article  Google Scholar 

  24. Ehrenstein GW (2004) Manual of plastics joining technology. Carl Hanser Verlag, Munich, Viena

    Google Scholar 

  25. Potente H (2004) Joining of plastics—fundamentals, methods, applications. Carl Hanser Verlag, Munich, Viena

    Google Scholar 

  26. Jundt H (2006) Schweißen in allen Formen. Plastverarbeiter 57(4):88–89

    Google Scholar 

  27. Haberstroh E, Hoffmann W-M (2006) Laserdurchstrahlschweißen von Kunststoffen. KGK 59(11):590–595

    Google Scholar 

  28. Korte W (1996) Examination of ultrasonic welding in combination of different thermoplastics with one and more joining planes. Dissertation, RWTH Aachen

  29. Goldak J, Oddy A, Gu M, Mashaie A, Hughes E (1992) Coupling heat transfer, microstructure evolution and thermal stress analysis in weld mechanics. In: Karlsson E (ed) Mechanical effects of welding. Springer Verlag, Berlin

    Google Scholar 

  30. Lenz B (2001) Finite Elemente-Modellierung des Laserstrahlschweißens für den Einsatz in der Fertigungsplanung. Dissertation, Technische Universität München

  31. Raday D (1992) Heat effects of welding. Springer Verlag, Berlin

    Google Scholar 

  32. Schnieders J (2004) Analyse der Fertigungs- und Prozeßeinflüsse auf die Spannungsrißbildung beim Fügen amorpher Thermoplaste mittels Heizelement. Dissertation, Universität Paderborn

  33. Potente H, Schnieders J (1999) Influence of hot plate welding process on the stress cracking of PMMA and PC. IIW International Institut of Welding; Com. XVI Polymer Joining and Adhesive Technology. Lissabon

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suveni Kreimeier Sooriyapiragasam.

Additional information

Recommended for publication by Commission C - XVI Polymer Joining and Adhesive Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sooriyapiragasam, S.K., Hopmann, C. Modeling of the heating process during the laser transmission welding of thermoplastics and calculation of the resulting stress distribution. Weld World 60, 777–791 (2016). https://doi.org/10.1007/s40194-016-0330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0330-z

Keyword (IIW Thesaurus)

Navigation