Skip to main content

Advertisement

Log in

Mitochondrial Genomics: A Complex Field Now Coming of Age

  • Genetic Counseling and Clinical Testing (B LeRoy and N Callanan, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The groundwork for mitochondrial medicine was laid 30 years ago with identification of the first disease-causing mitochondrial DNA (mtDNA) mutations in 1988. Three decades later, mutations in nearly 300 genes involving every possible mode of inheritance within both nuclear and mitochondrial genomes are now recognized to collectively comprise the largest class of inherited metabolic disease, affecting at least 1 in 4300 individuals across all ages. Significant progress has been made in recent years to improve understanding of mitochondrial biology and disease pathophysiology.

Recent Findings

Markedly improved understanding of the highly diverse molecular etiologies of multisystemic phenotypes in primary mitochondrial disease has resulted from massively parallel genomic sequencing technologies and improved bioinformatic resources that enable identification in individual patients of their disease’s precise genetic etiology. Key informatics resources of particular utility to the mitochondrial disease genomics community have been developed, including: (1) Mitocarta 2.0 repository of 1200+ verified mitochondria-localized proteins, (2) MITOMAP Web resource of curated mtDNA genome variants, and (3) Mitochondrial Disease Sequence Data Resource (MSeqDR) that centralizes Web curation and annotation of mitochondrial disease genes and variants in both genomes, ontology-defined phenotypes, and access to many analytic tools to support dual genomic data mining and interpretation. Gene and mutation-based disease categorization has proven particularly useful to identify the full clinical spectrum of disease that may affect a given individual.

Summary

Extensive genomic advances, both in technologic platforms and bioinformatics resources, have facilitated dramatic improvement in the accurate recognition and understanding of primary mitochondrial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dimauro S. A history of mitochondrial diseases. J Inherit Metab Dis. 2011;34:261–76.

    Article  PubMed  CAS  Google Scholar 

  2. Reid RA, Moyle J, Mitchell P. Synthesis of adenosine triphosphate by a protonmotive force in rat liver mitochondria. Nature. 1966;212:257–8.

    Article  PubMed  CAS  Google Scholar 

  3. • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242:1427–30. First report of a human mitochondrial DNA disease.

    Article  PubMed  CAS  Google Scholar 

  4. Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988;55:601–10.

    Article  PubMed  CAS  Google Scholar 

  5. Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331:717–9.

    Article  PubMed  CAS  Google Scholar 

  6. • McCormick E, Place E, Falk MJ. Molecular genetic testing for mitochondrial disease: from one generation to the next. Neurotherapeutics: J Am Soc Exp NeuroTherapeutics. 2013;10:251–61. Detailed review of evolution of molecular genetic testing for mitochondrial disease.

    Article  CAS  Google Scholar 

  7. Frazier, A. E., Thorburn, D. R., and Compton, A. G. (2017) Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. J Biol Chem, jbc.R117.809194. https://doi.org/10.1074/jbc.R117.809194

  8. Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;38:437–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. • Wallace DC, Chalkia D. Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. Cold Spring Harbor Perspect Biol. 2013;5:a021220. Comprehensive review of mitochondrial DNA genome complexities and relevance to human disease.

    Article  CAS  Google Scholar 

  10. Falk MJ. Neurodevelopmental manifestations of mitochondrial disease. Journal of developmental and behavioral pediatrics : JDBP. 2010;31:610–21.

    Article  PubMed  Google Scholar 

  11. Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134:112–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016;44:D1251–7.

    Article  PubMed  CAS  Google Scholar 

  13. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.

    Article  PubMed  Google Scholar 

  14. Chinnery PF. Mitochondrial disease in adults: what’s old and what’s new? EMBO molecular medicine. 2015;7:1503–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mitochondrial Medicine Society’s Committee on, D, Haas RH, Parikh S, Falk MJ, Saneto RP, Wolf NI, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab. 2008;94:16–37.

    Article  CAS  Google Scholar 

  16. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society. Genet Med : Off J Am Coll Med Genet. 2015;17:689–701.

    Article  CAS  Google Scholar 

  18. Cameron JM, Levandovskiy V, Mackay N, Tein I, Robinson BH. Deficiency of pyruvate dehydrogenase caused by novel and known mutations in the E1alpha subunit. Am J Med Genet. Part A. 2004;131:59–66.

    Article  PubMed  Google Scholar 

  19. Willemsen M, Rodenburg RJ, Teszas A, van den Heuvel L, Kosztolanyi G, Morava E. Females with PDHA1 gene mutations: a diagnostic challenge. Mitochondrion. 2006;6:155–9.

    Article  PubMed  CAS  Google Scholar 

  20. Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77:6715–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Egger J, Wilson J. Mitochondrial inheritance in a mitochondrially mediated disease. N Engl J Med. 1983;309:142–6.

    Article  PubMed  CAS  Google Scholar 

  22. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.

    Article  PubMed  CAS  Google Scholar 

  23. Rahman S, Poulton J, Marchington D, Suomalainen A. Decrease of 3243 A-->G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum Genet. 2001;68:238–40.

    Article  PubMed  CAS  Google Scholar 

  24. Brown MD, Torroni A, Reckord CL, Wallace DC. Phylogenetic analysis of Leber’s hereditary optic neuropathy mitochondrial DNA’s indicates multiple independent occurrences of the common mutations. Hum Mutat. 1995;6:311–25.

    Article  PubMed  CAS  Google Scholar 

  25. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, et al. Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background. Am J Hum Genet. 2007;81:228–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Torroni A, Campos Y, Rengo C, Sellitto D, Achilli A, Magri C, et al. Mitochondrial DNA haplogroups do not play a role in the variable phenotypic presentation of the A3243G mutation. Am J Hum Genet. 2003;72:1005–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wei W, Gomez-Duran A, Hudson G, Chinnery PF. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations. PLoS Genet. 2017;13:e1007126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang J, Schmitt ES, Landsverk ML, Zhang VW, Li FY, Graham BH, et al. An integrated approach for classifying mitochondrial DNA variants: one clinical diagnostic laboratory’s experience. Genet Med: Off J Am Coll Med Genet. 2012;14:620–6.

    Article  CAS  Google Scholar 

  29. Kogelnik AM, Lott MT, Brown MD, Navathe SB, Wallace DC. MITOMAP: a human mitochondrial genome database. Nucleic Acids Res. 1996;24:177–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 2007;35:D823–8.

    Article  PubMed  CAS  Google Scholar 

  31. Lott MT, Leipzig JN, Derbeneva O, Xie HM, Chalkia D, Sarmady M, et al. mtDNA variation and analysis using Mitomap and Mitomaster. Curr Protoc Bioinformatics. 2013;44, 1 23:21–6.

    Google Scholar 

  32. • Falk MJ, Shen L, Gonzalez M, Leipzig J, Lott MT, Stassen AP, et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol Genet Metab. 2015;114:388–96. Detailed overview of Mitochondrial Disease Sequence Data Resource (MSeqDR), an informatics resource for mitochondrial disease genetics and phenotypes.

    Article  PubMed  CAS  Google Scholar 

  33. Shen L, Diroma MA, Gonzalez M, Navarro-Gomez D, Leipzig J, Lott MT, et al. MSeqDR: a centralized knowledge repository and bioinformatics web resource to facilitate genomic investigations in mitochondrial disease. Hum Mutat. 2016;37:540–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Parikh S, Goldstein A, Karaa A, Koenig MK, Anselm I, Brunel Guitton C. et al. Patient Care standards for primary mitchondrial disease: a consensus statement from the mitochondrial medicine society. Genet Med. 2017;19. https://doi.org/10.1038/gim.2017.107.

  35. Falk MJ, Shen L, Gai X. From case studies to community knowledge base: MSeqDR provides a platform for the curation and genomic analysis of mitochondrial diseases. Cold Spring Harbor molecular case studies. 2016;2:a001065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bannwarth S, Procaccio V, Lebre AS, Jardel C, Chaussenot A, Hoarau C, et al. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders. J Med Genet. 2013;50:704–14.

    Article  PubMed  CAS  Google Scholar 

  37. Shen L, Attimonelli M, Bai R, Lott MT, Wallace DC, Falk MJ,Ga X. MseqDR mvTool: A mitochondrial DNA web and API resource for comprehensive variant annotation, universal nomenclature collation, and reference genome conversion. Hum. Mutat. 2018. https://doi.org/10.1002/humu.2342.

  38. Kaufmann P, Engelstad K, Wei Y, Kulikova R, Oskoui M, Sproule DM, et al. Natural history of MELAS associated with mitochondrial DNA m.3243A>G genotype. Neurology. 2011;77:1965–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015;116:4–12.

    Article  PubMed  CAS  Google Scholar 

  40. Sue CM, Bruno C, Andreu AL, Cargan A, Mendell JR, Tsao CY, et al. Infantile encephalopathy associated with the MELAS A3243G mutation. J Pediatr. 1999;134:696–700.

    Article  PubMed  CAS  Google Scholar 

  41. Koga Y, Akita Y, Takane N, Sato Y, Kato H. Heterogeneous presentation in A3243G mutation in the mitochondrial tRNA(Leu(UUR)) gene. Arch Dis Child. 2000;82:407–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yang YL, Sun F, Zhang Y, Qian N, Yuan Y, Wang ZX, et al. Clinical and laboratory survey of 65 Chinese patients with Leigh syndrome. Chin Med J. 2006;119:373–7.

    PubMed  CAS  Google Scholar 

  43. Santorelli FM, Tanji K, Shanske S, Krishna S, Schmidt RE, Greenwood RS, et al. The mitochondrial DNA A8344G mutation in Leigh syndrome revealed by analysis in paraffin-embedded sections: revisiting the past. Ann Neurol. 1998;44:962–4.

    Article  PubMed  CAS  Google Scholar 

  44. Mancuso M, Orsucci D, Angelini C, Bertini E, Carelli V, Comi GP, et al. Phenotypic heterogeneity of the 8344A>G mtDNA “MERRF” mutation. Neurology. 2013;80:2049–54.

    Article  PubMed  CAS  Google Scholar 

  45. Ogawa E, Shimura M, Fushimi T, Tajika M, Ichimoto K, Matsunaga A, et al. Clinical validity of biochemical and molecular analysis in diagnosing Leigh syndrome: a study of 106 Japanese patients. J Inherit Metab Dis. 2017;40:685–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Thorburn, D. R., Rahman, J., and Rahman, S. (1993) Mitochondrial DNA-associated Leigh syndrome and NARP. in GeneReviews((R)) (Adam, M. P., Ardinger, H. H., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Stephens, K., and Amemiya, A. eds.), Seattle (WA). pp.

  47. Rantamaki MT, Soini HK, Finnila SM, Majamaa K, Udd B. Adult-onset ataxia and polyneuropathy caused by mitochondrial 8993T-->C mutation. Ann Neurol. 2005;58:337–40. Adult-onset ataxia and polyneuropathy caused by mitochondrial 8993T→C mutation

    Article  PubMed  CAS  Google Scholar 

  48. White SL, Collins VR, Wolfe R, Cleary MA, Shanske S, DiMauro S, et al. Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet. 1999;65:474–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tatuch Y, Christodoulou J, Feigenbaum A, Clarke JT, Wherret J, Smith C, et al. Heteroplasmic mtDNA mutation (T----G) at 8993 can cause Leigh disease when the percentage of abnormal mtDNA is high. Am J Hum Genet. 1992;50:852–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Uziel G, Moroni I, Lamantea E, Fratta GM, Ciceri E, Carrara F, et al. Mitochondrial disease associated with the T8993G mutation of the mitochondrial ATPase 6 gene: a clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry. 1997;63:16–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, et al. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion. 2017;36:130–7.

    Article  PubMed  CAS  Google Scholar 

  52. Damas J, Carneiro J, Amorim A, Pereira F. MitoBreak: the mitochondrial DNA breakpoints database. Nucleic Acids Res. 2014;42:D1261–8.

    Article  PubMed  CAS  Google Scholar 

  53. Rotig A, Cormier V, Blanche S, Bonnefont JP, Ledeist F, Romero N, et al. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest. 1990;86:1601–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kearns TP, Sayre GP. Retinitis pigmentosa, external ophthalmophegia, and complete heart block: unusual syndrome with histologic study in one of two cases. AMA ArchOphthalmol. 1958;60:280–9.

    CAS  Google Scholar 

  55. DiMauro, S., and Hirano, M. (1993) Mitochondrial DNA deletion syndromes. in GeneReviews((R)) (Adam, M. P., Ardinger, H. H., Pagon, R. A., Wallace, S. E., Bean, L. J. H., Stephens, K., and Amemiya, A. eds.), Seattle (WA). pp.

  56. Longley MJ, Graziewicz MA, Bienstock RJ, Copeland WC. Consequences of mutations in human DNA polymerase gamma. Gene. 2005;354:125–31.

    Article  PubMed  CAS  Google Scholar 

  57. Nurminen A, Farnum GA, Kaguni LS. Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database. BBA clinical. 2017;7:147–56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saneto RP, Naviaux RK. Polymerase gamma disease through the ages. Developmental disabilities research reviews. 2010;16:163–74.

    Article  PubMed  Google Scholar 

  59. Saneto RP, Lee IC, Koenig MK, Bao X, Weng SW, Naviaux RK, et al. POLG DNA testing as an emerging standard of care before instituting valproic acid therapy for pediatric seizure disorders. Seizure. 2010;19:140–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marni J. Falk.

Ethics declarations

Conflict of Interest

Marni J. Falk reports other from REATA Pharmaceuticals, grants, personal fees and other from Stealth Pharmaceuticals, other from United Mitochondrial Disease Foundation, other from GENESIS, grants and other from Raptor Pharmaceuticals, outside the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetic Counseling and Clinical Testing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormick, E.M., Muraresku, C.C. & Falk, M.J. Mitochondrial Genomics: A Complex Field Now Coming of Age. Curr Genet Med Rep 6, 52–61 (2018). https://doi.org/10.1007/s40142-018-0137-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-018-0137-x

Keywords

Navigation