Skip to main content
Log in

Editing the Genome: Prospects, Progress, Implications, and Cautions

  • Ethics in Genetic Medicine (L Parker, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Clinicians, clinical researchers, and the general public all need to consider the implications of rapid advances in gene editing technology, which have given rise not only to new hope for the development of corrective interventions for genetic defects and many other diseases and conditions but also to many ethical, social, and policy concerns.

Recent Findings

Gene editing tools are potentially both more precise and more accurate than current gene transfer interventions; in addition, the discovery and development of the CRISPR/Cas9 system has made gene editing research considerably easier, faster, and cheaper. As a result, long-standing debates about the safety, efficacy, affordability, ethical and social acceptability, oversight, and control of efforts to pursue human germline alteration and enhancement have been rekindled. Added to these debates are controversies about newly discovered capacities to use gene editing to reshape the environment by altering or eliminating non-human species (insects in particular) that pose threats to humans.

Summary

This review examines the science of the new gene editing boom in its social and historical context and discusses both past and current policy debates and future prospects for ethical consensus on whether, where, when, and how to move forward with clinical research and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Hampton T. Ethical and societal questions loom large as gene editing moves closer to the clinic. JAMA. 2016;315(6):546–8. A brief overview of historical and recent scientific developments and ethical and policy debates about genetic intervention research in general and gene editing in particular.

    Article  CAS  PubMed  Google Scholar 

  2. Coutts MC. Human gene therapy. Kennedy Inst Ethics J. 1994;4(1):63–83.

    Article  PubMed  Google Scholar 

  3. Weiss R, Nelson D. Methods faulted in gene test death, teen too ill for therapy, probe finds. Washington Post. 1999;8:A1.

    Google Scholar 

  4. Gelsinger P. Jesse’s intent. Guinea pig zero: a journal for human research subjects. 2000. Issue #8. http://www.guineapigzero.com/jesses-intent.html. Accessed 12 Oct 2016.

  5. Pearson S, Jia H, Kandachi K. China approves first gene therapy. Nature Biotechnol. 2004;22(1):3–4.

    Article  CAS  Google Scholar 

  6. Moran N. First gene therapy glybera (finally) gets EMA approval. BioWorld, Thompson Reuters. 2012. http://www.bioworld.com/content/first-gene-therapy-glybera-finally-gets-ema-approval-1. Accessed 12 Oct 2016.

  7. Ward A. GSK to allow staggered payments for EMA-approved gene therapy. The financial times. 2016. http://www.msn.com/en-gb/news/other/gsk-to-allow-staggered-payments-for-ema-approved-gene-therapy/ar-BBrdZid. Accessed 12 Oct 2016.

  8. Pollack A. Eye treatment closes in on being first gene therapy approved in U.S. New York Times. 2015. p. B3. http://www.nytimes.com/2015/10/05/science/eye-treatment-closes-in-on-being-first-gene-therapy-approved-in-us.html. Accessed 12 Oct 2016.

  9. Van den Driessche T, Chuah MK. CRISPR/Cas9 flexes its muscles: in vivo somatic gene editing for muscular dystrophy. Mol Ther. 2016;24:414–6.

    Article  CAS  Google Scholar 

  10. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 2005;33(18):5978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boch J. TALEs of genome targeting. Nature Biotechnol. 2011;29(2):135–6.

    Article  CAS  Google Scholar 

  12. GeMCRIS website. https://www.gemcris.od.nih.gov/Contents/GC_HOME.asp. Accessed 12 Oct 2016.

  13. Pollack A. A cell therapy untested in humans saves a baby with cancer. New York Times. 2015;6:B3.

    Google Scholar 

  14. Stoddard BL, Fox K. Editorial: CRISPR in nucleic acids research. Nucleic Acids Res. 2016;44:4489–90.

    Article  Google Scholar 

  15. Keener AB. Gene editing: from roots to riches. Scientist. 2016. http://www.the-scientist.com/?articles.view/articleNo/47156/title/Gene-Editing--From-Roots-to-Riches/. Accessed 12 Oct 2016.

  16. Comfort N. Can we cure genetic diseases without slipping into eugenics? The nation. 2015. http://www.thenation.com/article/can-we-cure-genetic-diseases-without-slipping-into-eugenics/?print=1. Accessed 12 Oct 2016.

  17. Specter M. The gene hackers. New Yorker. 2015;16:52–61.

    Google Scholar 

  18. Park A. Life: the remix. Time. 2016;4:43–8.

    Google Scholar 

  19. Center for Genomics and Society. About human germline gene editing. http://www.geneticsandsociety.org/article.php?id=8711. Accessed 12 Oct 2016.

  20. Office of Science Policy, NIH. Next steps on research using animal embryos containing human cells, Under the Poliscope. 2016. http://osp.od.nih.gov/under-the-poliscope/2016/08/next-steps-research-using-animal-embryos-containing-human-cells. Accessed 12 Oct 2016.

  21. Regalado A. Top US intelligence official calls gene editing a WMD threat. MIT Technology Rev. 2016. https://www.technologyreview.com/s/600774/top-us-intelligence-official-calls-gene-editing-a-wmd-threat/. Accessed 12 Oct 2016.

  22. Marchant GE, Wallach W. Coordinating technology governance. Issues Sci Technol. 2015;31(4). http://issues.org/31-4/coordinating-technology-governance/. Accessed 12 Oct 2016.

  23. McEwen JE, Boyer JT, Sun KY, et al. The ethical, legal, and social implications program of the National Human Genome Research Institute: reflections on an ongoing experiment. Ann Rev Genomics Hum Genetics. 2014;15:481–505.

    Article  CAS  Google Scholar 

  24. Pinker S. The moral imperative for bioethics. Boston Globe. 2015. https://www.bostonglobe.com/opinion/2015/07/31/the-moral-imperative-for-bioethics/JmEkoyzlTAu9oQV76JrK9N/story.html. Accessed 12 Oct 2016.

  25. Hall SS. Will we control our genetic destinies? Sci Am. 2016;315:54–61.

    Article  PubMed  Google Scholar 

  26. Regalado A. Engineering the perfect baby. MIT Technol Rev. 2015;118(3):27–33.

    Google Scholar 

  27. Rogers M. The Pandora’s box Congress, Rolling Stone. 1975.

  28. Berg P. Asilomar 1975: DNA modification secured. Nature. 2008;455:290–1.

    Article  CAS  PubMed  Google Scholar 

  29. Hurlbut JB. Limits of responsibility: genome editing, Asilomar, and the politics of deliberation. Hastings Center Rep. 2015;45(5):11–4.

    Article  Google Scholar 

  30. Hayden EC. Tomorrow’s children. Nature. 2016;530:402–5.

    Article  Google Scholar 

  31. Regalado A. Patients favor changing the genes of the next generation with CRISPR, MIT Technol Rev. 2015. https://www.technologyreview.com/s/544141/patients-favor-changing-the-genes-of-the-next-generation-with-crispr/. Accessed 12 Oct 2016.

  32. National Academies of Sciences, Engineering, and Medicine. International summit on human gene editing: a global discussion–commissioned papers, 2015. www.nationalacademies.org/cs/groups/pgasite/documents/webpage/pga_170455.pdf. Accessed 12 Oct 2016.

  33. Sarewitz D. CRISPR: science can’t solve it. Nature. 2015;522:413–4.

    Article  CAS  PubMed  Google Scholar 

  34. • Lander ES. Brave new genome. NEJM. 2015;373:5–8. Short comprehensive review of ethical and policy issues in gene editing.

    Article  CAS  PubMed  Google Scholar 

  35. Lander ES. The heroes of CRISPR. Cell. 2016;164(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  36. Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the IAP gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  38. Sternberg SH, Doudna J. Expanding the biologist’s toolkit with CRISPR-Cas9. Mol Cell. 2015;58:568–74.

    Article  CAS  PubMed  Google Scholar 

  39. • Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Biol. 2016;24:430–46. Definitive scientific overview.

    CAS  Google Scholar 

  40. Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  41. Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109(39):15539–40.

    Article  CAS  Google Scholar 

  42. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1077–86.

    Article  CAS  Google Scholar 

  44. Jo YI, Suresh B, Kim H, et al. CRISPR/Cas9 system as an innovative genetic engineering tool: enhancements in sequence specificity and delivery methods. Biochim Biophys Acta. 1856;2015:234–43.

    Google Scholar 

  45. Mei Y, Wang Y, Chen H, et al. Recent progress in CRISPR/Cas9 technology. J Genetics Genomics. 2016;43:63–75.

    Article  Google Scholar 

  46. • Baltimore D, Berg P, Botchan M, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015;348:36–8. The first (and arguably most influential) group policy recommendations on gene editing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. International Society for Stem Cell Research. The ISSCR statement on human germline genome modification. 2015. http://www.isscr.org/docs/default-source/guidelines/isscr-statement-on-human-germline-genome-modification.pdf?sfvrsn=2. Accessed 12 Oct 2016.

  48. Lanphier E, Urnov F, Haecker SE, et al. Don’t edit the human germ line. Nature. 2015;519:410–1.

    Article  CAS  PubMed  Google Scholar 

  49. • Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72. The first publication on human embryo research using CRISPR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. National Institutes of Health. Statement on NIH funding of research using gene-editing technologies in human embryos. 2015. https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-nih-funding-research-using-gene-editing-technologies-human-embryos. Accessed 12 Oct 2016.

  51. Friedmann T, Jonlin EC, King NMP, et al. ASGCT and JSGT joint position statement on human genomic editing. Mol Ther. 2015;23:1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hinxton Group. Statement on genome editing technologies and human germline genetic modification. 2015. www.hinxtongroup.org/Hinxton2015_Statement.pdf. Accessed 12 Oct 2016.

  53. International Bioethics Committee. Report of the IBC on updating its reflection on the human genome and human rights. (Paris: UNESCO). 2015. http://unesdoc.unesco.org/images/0023/002332/233258E.pdf. Accessed 12 Oct 2016.

  54. National Institutes of Health. Notice Number NOT-OD-15-158, NIH research involving introduction of human pluripotent cells into non-human vertebrate animal pre-gastrulation embryos. 2015. http://grants.nih.gov/grants/guide/notice-files/NOT-OD-15-158.html. Accessed 12 Oct 2016.

  55. Maynard A. What do you think about scientists creating human-nonhuman hybrids? The National Institutes of Health wants to know. Slate/Future Tense. 2016. http://www.slate.com/articles/technology/future_tense/2016/08/nih_asks_for_public_input_on_chimeras_human_nonhuman_hybrids.html. Accessed 12 Oct 2016.

  56. National Academies of Sciences, Engineering, and Medicine. On human gene editing: International Summit statement. 2015. www.nationalacademies.org/opinews/newsitem.aspx?RecordID=12032015a. Accessed 12 Oct 2016.

  57. National Academies of Sciences, Engineering, and Medicine. International summit on human gene editing: a global discussion. Washington, DC: National Academies Press; 2015 .http://www.nap.edu/21913. Accessed 12 Oct 2016

    Google Scholar 

  58. Reardon S. Global summit reveals divergent views on human gene editing. Nature. 2015;528:173.

    Article  CAS  PubMed  Google Scholar 

  59. National Academies of Sciences, Engineering, and Medicine. Human gene-editing initiative consensus study. Human gene editing: scientific, medical, and ethical considerations. http://www.nationalacademies.org/gene-editing/consensus-study/index.htm. Accessed 12 Oct 2016.

  60. Garde D. The cure for ‘bubble boy’ disease will cost $665,000. STAT News. 2016. https://www.statnews.com/2016/08/03/gene-therapy-price-gsk/. Accessed 12 Oct 2016.

  61. King NMP. Accident and desire. Hastings Center Rep. 2003;33(2):23–30.

    Article  Google Scholar 

  62. Liu KI, Bin Ramli MN, Woo CWA, et al. A chemical-inducible CRISPR-Cas9 system for rapid control of gene editing. Nature Chem Biol. 2016; doi:10.1038/nchembio.2179.

    Google Scholar 

  63. Begley S. They’re going to CRISPR people. What could possibly go wrong? STAT. 2016. https://www.statnews.com/2016/06/23/crispr-humans-penn-clinical-trial/. Accessed 12 Oct 2016.

  64. Belkin L. The made-to-order savior: producing a perfect baby sibling. New York Times Magazine. 2001. http://www.nytimes.com/2001/07/01/magazine/the-made-to-order-savior.html?_r=0. Accessed 12 Oct 2016.

  65. Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016; doi:10.1038/nature.2016.19270.

    PubMed Central  Google Scholar 

  66. Callaway E. Embryo-editing research gathers momentum. Nature. 2016;532:289–90.

    Article  CAS  PubMed  Google Scholar 

  67. Stein R. Breaking taboo, Swedish scientist seeks to edit DNA of healthy human embryos, Shots Health News from NPR. 2016. http://www.npr.org/sections/health-shots/2016/09/22/494591738/breaking-taboo-swedish-scientist-seeks-to-edit-dna-of-healthy-human-embryos. Accessed 12 Oct 2016.

  68. Flotte R. Therapeutic germ line alteration: has CRISPR/Cas9 technology forced the question? Mol Ther. 2015;26:1–2.

    Google Scholar 

  69. Hildt E. Human germline interventions—think first. Frontiers Genetics. 2016; doi:10.3389/fgene.2016.00081.

    Google Scholar 

  70. Sugarman J. Ethics and germline gene editing. EMBO Rep. 2015;16:879–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Heidari R, Shaw DM, Elger BS. CRISPR and the rebirth of synthetic biology. Sci Eng Ethics. 2016; doi:10.1007/s11948-016-9768-z.

    PubMed  Google Scholar 

  72. Porteus MH, Dann CT. Genome editing of the germline: broadening the discussion. Mol Ther. 2015;23:980–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carroll D. A perspective on the state of genome editing. Mol Ther. 2016;24:412–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhai X, Ng V, Lie R. No ethical divide between China and the West in human embyro research. Dev World Bioeth. 2016;16:116–20.

    Article  PubMed  Google Scholar 

  75. Savulescu J, Pugh J, Douglas T, Gyngell C. The moral imperative to continue gene editing research on human embryos. Protein Cell. 2015;6:476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gallagher J. Embryo engineering a moral duty, says top scientist. BBC News. 2015. www.bbc.com/news/uk-politics-32633510. Accessed 12 Oct 2016.

  77. • Chapman AR, Frankel MS. Human inheritable genetic modification: assessing scientific, ethical, religious, and policy issues. Washington DC: American Association for the Advancement of Science; 2000 .https://www.aaas.org/sites/default/files/migrate/uploads/germline.pdf. Accessed 12 Oct 2016. Definitive examination.

    Google Scholar 

  78. Walters L, Palmer JG. The ethics of human gene therapy. New York: Oxford University Press; 1997.

    Google Scholar 

  79. Juengst ET. Can enhancement be distinguished from prevention in genetic medicine? J Med Philos. 1997;22:125–42.

    Article  CAS  PubMed  Google Scholar 

  80. • Juengst ET, Moseley D. Human enhancement. In: Stanford encyclopedia of philosophy. http://plato.stanford.edu/entries/enhancement/ ). Accessed 12 Oct 2016. Clear and detailed examination .

  81. Shaw D, Dondorp W, Geijsen N, de Wert G. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs? J Med Ethics. 2015;41:970–4.

    Article  PubMed  Google Scholar 

  82. Walsh F. US bid to grow human organs for transplant inside pigs. BBC News. 2016. www.bbc.com/news/health-36437428. Accessed 12 Oct 2016.

  83. • National Academies of Sciences, Engineering, and Medicine. Gene drives on the horizon. 2016. http://nas-sites.org/gene-drives/. Accessed 12 Oct 2016. Comprehensive report on the science and the policy implications of gene drives .

  84. Begley S. Monsanto licenses CRISPR technology to modify crops—with key restrictions. STAT/Scientific American. 2016. https://www.statnews.com/2016/09/22/monsanto-licenses-crispr/. Accessed 12 Oct 2016.

  85. Goldman J. Harnessing the power of gene drives to save wildlife. Sci Am. 2016. http://www.scientificamerican.com/article/harnessing-the-power-of-gene-drives-to-save-wildlife/. Accessed 12 Oct 2016.

  86. Swetlitz I. ‘Gene drive’ organisms should be tested in field trials, not widely released, experts say. STAT. 2016. https://www.statnews.com/2016/06/08/gene-drive-field-trials/. Accessed 12 Oct 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy M. P. King.

Ethics declarations

Conflict of Interest

Nancy M. P. King, Pat C. Lord, and Douglas E. Lemley declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Ethics in Genetic Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, N.M.P., Lord, P.C. & Lemley, D.E. Editing the Genome: Prospects, Progress, Implications, and Cautions. Curr Genet Med Rep 5, 35–43 (2017). https://doi.org/10.1007/s40142-017-0109-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-017-0109-6

Keywords

Navigation