Skip to main content

Advertisement

Log in

Genetics of Orofacial Cleft Birth Defects

  • Clinical Genetics (JM Stoler, Section Editor)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Orofacial cleft birth defects (OFCs) are the most common facial birth defects and among the most common of all birth defects. OFCs can occur as isolated, nonsyndromic events or as part of Mendelian syndromes. Notably, many genes that contribute to the etiology of these disorders, both syndromic and nonsyndromic, have now been identified after decades of research using multiple genetic approaches. The pace of gene identification has significantly increased recently due to advances in sequencing and genotyping technologies. Multiple genome-wide association studies of nonsyndromic OFCs have identified genomic regions that were followed by successful targeted sequencing and functional studies. In addition, other genomic techniques, primarily whole-exome sequencing, have also identified the major genes for many syndromic forms of OFC. Future progress will hinge on identifying functional variants, investigation of pathway and other interactions, and inclusion of phenotypic and ethnic diversity in studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance, •• Of major importance

  1. Tessier P. Anatomical classification facial, cranio-facial and latero-facial clefts. J Maxillofac Surg. 1976;4(2):69–92.

    CAS  PubMed  Google Scholar 

  2. Mossey PA, Modell B. Epidemiology of oral clefts 2012: an international perspective. Front Oral Biol. 2012;16:1–18.

    CAS  PubMed  Google Scholar 

  3. Mossey P. Epidemiology underpinning research in the aetiology of orofacial clefts. Orthod Craniofac Res. 2007;10(3):114–20.

    PubMed  Google Scholar 

  4. Wehby GL, Cassell CH. The impact of orofacial clefts on quality of life and healthcare use and costs. Oral Dis. 2010;16(1):3–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Berk NW, Marazita ML. The Costs of Cleft Lip and Palate: Personal and Societal Implications. In: Wyszynski DF, editor. Cleft Lip and Palate: From Origin to Treatment. Oxford: Oxford University Press; 2002.

    Google Scholar 

  6. Semb G, Brattström V, Mølsted K, Prahl-Andersen B, Shaw WC. The Eurocleft study: intercenter study of treatment outcome in patients with complete cleft lip and palate. Part 1: introduction and treatment experience. Cleft Palate Craniofac J. 2005;42(1):64–8.

    PubMed  Google Scholar 

  7. Christensen K, Juel K, Herskind AM, Murray JC. Long term follow up study of survival associated with cleft lip and palate at birth. BMJ (Clin Res ed). 2004;328(7453):1405.

    Google Scholar 

  8. Bille C, Winther JF, Bautz A, Murray JC, Olsen J, Christensen K. Cancer risk in persons with oral cleft–a population-based study of 8,093 cases. Am J Epidemiol. 2005;161(11):1047–55.

    PubMed Central  PubMed  Google Scholar 

  9. Zhu JL, Basso O, Hasle H, Winther JF, Olsen JH, Olsen J. Do parents of children with congenital malformations have a higher cancer risk? A nationwide study in Denmark. Br J Cancer. 2002;87(5):524–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bille C, Knudsen LB, Christensen K. Changing lifestyles and oral clefts occurrence in Denmark. Cleft Palate Craniofac J. 2005;42(3):255–9.

    PubMed Central  PubMed  Google Scholar 

  11. Dietz A, Pedersen DA, Jacobsen R, Wehby GL, Murray JC, Christensen K. Risk of breast cancer in families with cleft lip and palate. Ann Epidemiol. 2012;22(1):37–42.

    PubMed Central  PubMed  Google Scholar 

  12. Menezes R, Marazita ML, Goldstein McHenry T, et al. AXIS inhibition protein 2, orofacial clefts and a family history of cancer. J Am Dent Assoc. 2009;140(1):80–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Wehby GL, Castilla EE, Goco N, et al. Description of the methodology used in an ongoing pediatric care interventional study of children born with cleft lip and palate in South America [NCT00097149]. BMC Pediatr. 2006;6:9.

    PubMed Central  PubMed  Google Scholar 

  14. Boo-Chai K. An ancient Chinese text on a cleft lip. Plast Reconstr Surg. 1966;38(2):89–91.

    CAS  PubMed  Google Scholar 

  15. Darwin C. The variation of animals and plants under domestication, vol. 1. London: John Murray, Albermarle Street; 1875.

    Google Scholar 

  16. Marazita ML. The evolution of human genetic studies of cleft lip and cleft palate. Annu Rev Genomics Hum Genet. 2012;13:263–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Trew CJ. Sistens plura exempla palati deficientis. Nova acta physico-medica academiae caesarae Leopoldion-Carolinae. 1757;1:445–447.

  18. Jones MC. Etiology of facial clefts: prospective evaluation of 428 patients. Cleft Palate J. 1988;25(1):16–20.

    CAS  PubMed  Google Scholar 

  19. Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12(3):167–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 2010;42(9):790–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ng SB, Buckingham KJ, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet. 2010;42(1):30–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Niikawa N, Kuroki Y, Kajii T, et al. Kabuki make-up (Niikawa-Kuroki) syndrome: a study of 62 patients. Am J Med Genet. 1988;31(3):565–89.

    CAS  PubMed  Google Scholar 

  23. Hannibal MC, Buckingham KJ, Ng SB, et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A. 2011;155A(7):1511–6.

    PubMed  Google Scholar 

  24. Banka S, Veeramachaneni R, Reardon W, et al. How genetically heterogeneous is Kabuki syndrome?: MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum. Eur J Hum Genet. 2012;20(4):381–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Lederer D, Grisart B, Digilio MC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Hum Genet. 2012;90(1):119–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Miyake N, Koshimizu E, Okamoto N, et al. MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 2013;161A(9):2234–43.

    PubMed  Google Scholar 

  27. Burdick AB. Genetic epidemiology and control of genetic expression in van der Woude syndrome. J Craniofac Genet Dev Biol Suppl. 1986;2:99–105.

    CAS  PubMed  Google Scholar 

  28. Van Der Woude A. Fistula labii inferioris congenita and its association with cleft lip and palate. Am J Hum Genet. 1954;6(2):244–56.

    Google Scholar 

  29. Kondo S, Schutte BC, Richardson RJ, et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002;32(2):285–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Koillinen H, Wong FK, Rautio J, et al. Mapping of the second locus for the Van der Woude syndrome to chromosome 1p34. Eur J Hum Genet. 2001;9(10):747–52.

    CAS  PubMed  Google Scholar 

  31. • Peyrard-Janvid M, Leslie EJ, Kousa YA, et al. Dominant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development. Am J Hum Genet. 2014;94(1):23–32. This study identified the second gene for Van der Woude syndrome by following up a linkage peak reported in 2000 and showed evidence for a genotype-phenotype correlation.

  32. Zhao X, Qu Z, Tickner J, Xu J, Dai K, Zhang X. The role of SATB2 in skeletogenesis and human disease. Cytokine Growth Factor Rev. 2014;25(1):35–44.

    CAS  PubMed  Google Scholar 

  33. Leoyklang P, Suphapeetiporn K, Siriwan P, et al. Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat. 2007;28(7):732–8.

    CAS  PubMed  Google Scholar 

  34. FitzPatrick DR, Carr IM, McLaren L, et al. Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet. 2003;12(19):2491–501.

    CAS  PubMed  Google Scholar 

  35. Balasubramanian M, Smith K, Basel-Vanagaite L, et al. Case series: 2q33.1 microdeletion syndrome–further delineation of the phenotype. J Med Genet. 2011;48(5):290–8.

    CAS  PubMed  Google Scholar 

  36. Docker D, Schubach M, Menzel M, et al. Further delineation of the SATB2 phenotype. Eur J Hum Genet. 2014;22(8):1034–9.

    PubMed Central  PubMed  Google Scholar 

  37. Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674–82.

    CAS  PubMed  Google Scholar 

  38. Zarate YA, Perry H, Ben-Omran T, et al. Further supporting evidence for the SATB2-associated syndrome found through whole exome sequencing. Am J Med Genet A. 2015;167(5):1026–32.

    CAS  Google Scholar 

  39. Lahtela J, Nousiainen HO, Stefanovic V, et al. Mutant CHUK and severe fetal encasement malformation. N Engl J Med. 2010;363(17):1631–7.

    CAS  PubMed  Google Scholar 

  40. Leslie EJ, O’Sullivan J, Cunningham ML, et al. Expanding the genetic and phenotypic spectrum of popliteal pterygium disorders. Am J Med Genet A. 2015;167(3):545–52.

    CAS  Google Scholar 

  41. Bonner JJ, Terasaki PI, Thompson P, et al. HLA phenotype frequencies in individuals with cleft lip and/or cleft palate. Tissue Antigens. 1978;12(3):228–32.

    CAS  PubMed  Google Scholar 

  42. Watanabe T, Ohishi M, Tashiro H. Population and family studies of HLA in Japanese with cleft lip and cleft palate. Cleft Palate J. 1984;21(4):293–300.

    CAS  PubMed  Google Scholar 

  43. Jugessur A, Farlie PG, Kilpatrick N. The genetics of isolated orofacial clefts: from genotypes to subphenotypes. Oral Dis. 2009;15(7):437–53.

    CAS  PubMed  Google Scholar 

  44. Murray JC. Gene/environment causes of cleft lip and/or palate. Clin Genet. 2002;61(4):248–56.

    CAS  PubMed  Google Scholar 

  45. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11(3):241–7.

    CAS  PubMed  Google Scholar 

  46. Leslie EJ, Marazita ML. Genetics of cleft lip and cleft palate. Am J Med Genet C Semin Med Genet. 2013;163C(4):246–58.

    PubMed  Google Scholar 

  47. Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J Pediatr. 2009;155(6):909–13.

    CAS  PubMed  Google Scholar 

  48. Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet. 2009;41(4):473–7.

    CAS  PubMed  Google Scholar 

  49. Mangold E, Ludwig KU, Birnbaum S, et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate. Nat Genet. 2010;42(1):24–6.

    CAS  PubMed  Google Scholar 

  50. Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat Genet. 2010;42(6):525–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. • Sun Y, Huang Y, Yin A, et al. Genome-wide association study identifies a new susceptibility locus for cleft lip with or without a cleft palate. Nat Commun. 2015;6:6414. This study was the largest GWAS of OFCs to date that includes Asian samples, and identified a new locus on 16p13.

  52. Beaty TH, Ruczinski I, Murray JC, et al. Evidence for gene-environment interaction in a genome wide study of nonsyndromic cleft palate. Genet Epidemiol. 2011;35(6):469–78.

    PubMed Central  PubMed  Google Scholar 

  53. Camargo M, Rivera D, Moreno L, et al. GWAS reveals new recessive loci associated with non-syndromic facial clefting. Eur J Med Genet. 2012;55(10):510–4.

    PubMed Central  PubMed  Google Scholar 

  54. • Ludwig KU, Mangold E, Herms S, et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci. Nat Genet. 2012;44(9):968–971. The first meta-analysis of OFC GWAS studies identified population and phenotype heterogeneity.

  55. Rahimov F, Marazita ML, Visel A, et al. Disruption of an AP-2alpha binding site in an IRF6 enhancer is associated with cleft lip. Nat Genet. 2008;40(11):1341–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Marazita ML, Lidral AC, Murray JC, et al. Genome scan, fine-mapping, and candidate gene analysis of non-syndromic cleft lip with or without cleft palate reveals phenotype-specific differences in linkage and association results. Hum Hered. 2009;68(3):151–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Cornelis MC, Agrawal A, Cole JW, et al. The Gene, Environment Association Studies consortium (GENEVA): maximizing the knowledge obtained from GWAS by collaboration across studies of multiple conditions. Genet Epidemiol. 2010;34(4):364–72.

    PubMed Central  PubMed  Google Scholar 

  59. Murray T, Taub MA, Ruczinski I, et al. Examining markers in 8q24 to explain differences in evidence for association with cleft lip with/without cleft palate between Asians and Europeans. Genet Epidemiol. 2012;36(4):392–9.

    PubMed Central  PubMed  Google Scholar 

  60. Beaty TH, Taub MA, Scott AF, et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum Genet. 2013;132(7):771–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Grosen D, Chevrier C, Skytthe A, et al. A cohort study of recurrence patterns among more than 54,000 relatives of oral cleft cases in Denmark: support for the multifactorial threshold model of inheritance. J Med Genet. 2010;47(3):162–8.

    PubMed Central  PubMed  Google Scholar 

  62. Jia Z, Leslie EJ, Cooper ME, et al. Replication of 13q31.1 association in nonsyndromic cleft lip with cleft palate in Europeans. Am J Med Genet A. 2015;167(5):1054–60.

    CAS  PubMed Central  Google Scholar 

  63. Reiter R, Brosch S, Goebel I, et al. A post GWAS association study of SNPs associated with cleft lip with or without cleft palate in submucous cleft palate. Am J Med Genet A. 2015;167A(3):670–3.

    PubMed  Google Scholar 

  64. Jugessur A, Murray JC. Orofacial clefting: recent insights into a complex trait. Curr Opin Genet Dev. 2005;15(3):270–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Leslie EJ, Murray JC. Evaluating rare coding variants as contributing causes to non-syndromic cleft lip and palate. Clinical genetics. 2013;84(5):496–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Leoyklang P, Siriwan P, Shotelersuk V. A mutation of the p63 gene in non-syndromic cleft lip. J Med Genet. 2006;43(6):e28.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Riley BM, Mansilla MA, Ma J, et al. Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci USA. 2007;104(11):4512–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Al Chawa T, Ludwig KU, Fier H, et al. Nonsyndromic cleft lip with or without cleft palate: Increased burden of rare variants within Gremlin-1, a component of the bone morphogenetic protein 4 pathway. Birth Defects Res A Clin Mol Teratol. 2014;100(6):493–8.

    CAS  PubMed  Google Scholar 

  69. Leslie EJ, Mansilla MA, Biggs LC, et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22. Birth Defects Res A. 2012;94(11):934–42.

    CAS  Google Scholar 

  70. Butali A, Suzuki S, Cooper ME, et al. Replication of GWAS Candidate Genes in Four Independent Populations Confirm the Role of Common and Rare Variants in PAX7 and VAX1 in the Etiology of Non-syndromic CL(P). Am J Med Genet A. 2012;161A(5):965–72.

    Google Scholar 

  71. Nasser E, Mangold E, Tradowsky DC, et al. Resequencing of VAX1 in patients with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol. 2012;94(11):925–33.

    CAS  PubMed  Google Scholar 

  72. •• Leslie EJ, Taub MA, Liu H, et al. Identification of Functional Variants for Cleft Lip with or without Cleft Palate in or near PAX7, FGFR2, and NOG by Targeted Sequencing of GWAS Loci. Am J Hum Genet. 2015;96(3):397–411. This study identified likely pathogenic variants for OFCs using targeted sequencing and in vitro, and in vivo functional analyses.

  73. •• Bureau A, Parker MM, Ruczinski I, et al. Whole exome sequencing of distant relatives in multiplex families implicates rare variants in candidate genes for oral clefts. Genetics. 2014;197(3):1039–1044. This was the first study to use exome sequencing for nonsyndromic OFCs.

  74. Frebourg T, Oliveira C, Hochain P, et al. Cleft lip/palate and CDH1/E-cadherin mutations in families with hereditary diffuse gastric cancer. J Med Genet. 2006;43(2):138–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Snead MP, Yates JR. Clinical and Molecular genetics of Stickler syndrome. J Med Genet. 1999;36(5):353–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Alzahrani F. Al Hazzaa SA, Tayeb H, Alkuraya FS. LOXL3, encoding lysyl oxidase-like 3, is mutated in a family with autosomal recessive Stickler syndrome. Hum Genet. 2015;134(4):451–3.

    CAS  PubMed  Google Scholar 

  77. Abbott BD. The etiology of cleft palate: a 50-year search for mechanistic and molecular understanding. Birth Defects Res B Dev Reprod Toxicol. 2010;89(4):266–74.

    CAS  PubMed  Google Scholar 

  78. Simonis N, Migeotte I, Lambert N, et al. FGFR1 mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet. 2013;50(9):585–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Dode C, Levilliers J, Dupont JM, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.

    CAS  PubMed  Google Scholar 

  80. Reardon W, Winter RM, Rutland P, Pulleyn LJ, Jones BM, Malcolm S. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet. 1994;8(1):98–103.

    CAS  PubMed  Google Scholar 

  81. Wilkie AO, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet. 1995;9(2):165–72.

    CAS  PubMed  Google Scholar 

  82. Robertson SP, Twigg SR, Sutherland-Smith AJ, et al. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat Genet. 2003;33(4):487–91.

    CAS  PubMed  Google Scholar 

  83. Bamforth JS, Hughes IA, Lazarus JH, Weaver CM, Harper PS. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26(1):49–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Ferrante MI, Giorgio G, Feather SA, et al. Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet. 2001;68(3):569–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Johnston JJ, Sapp JC, Turner JT, et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Hum Mutat. 2010;31(10):1142–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet. 2000;24(4):342–3.

    PubMed  Google Scholar 

  87. Laumonnier F, Holbert S, Ronce N, et al. Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet. 2005;42(10):780–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell. 1996;85(6):841–51.

    CAS  PubMed  Google Scholar 

  89. Johnson RL, Rothman AL, Xie J, et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science. 1996;272(5268):1668–71.

    CAS  PubMed  Google Scholar 

  90. Kalay E, Sezgin O, Chellappa V, et al. Mutations in RIPK4 cause the autosomal-recessive form of popliteal pterygium syndrome. Am J Hum Genet. 2012;90(1):76–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Mitchell K, O’Sullivan J, Missero C, et al. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet. 2012;90(1):69–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Roessler E, Belloni E, Gaudenz K, et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996;14(3):357–60.

    CAS  PubMed  Google Scholar 

  93. Wallis DE, Roessler E, Hehr U, et al. Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet. 1999;22(2):196–8.

    CAS  PubMed  Google Scholar 

  94. Gripp KW, Wotton D, Edwards MC, et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet. 2000;25(2):205–8.

    CAS  PubMed  Google Scholar 

  95. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111–20.

    CAS  PubMed  Google Scholar 

  96. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525–30.

    CAS  PubMed  Google Scholar 

  97. Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet. 2009;41(3):359–64.

    CAS  PubMed  Google Scholar 

  98. Packham EA, Brook JD. T-box genes in human disorders. Hum Mol Genet. 2003;12(Spec No 1):R37–44.

    CAS  PubMed  Google Scholar 

  99. Group TCC. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. The Treacher Collins Syndrome Collaborative Group. Nat Genet. 1996;12(2):130–6.

    Google Scholar 

  100. Milunsky JM, Maher TA, Zhao G, et al. TFAP2A mutations result in branchio-oculo-facial syndrome. Am J Hum Genet. 2008;82(5):1171–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

    CAS  PubMed  Google Scholar 

  102. McGrath JA, Duijf PH, Doetsch V, et al. Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet. 2001;10(3):221–9.

    CAS  PubMed  Google Scholar 

  103. Celli J, Duijf P, Hamel BC, et al. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 1999;99(2):143–53.

    CAS  PubMed  Google Scholar 

  104. el Ghouzzi V, Le Merrer M, Perrin-Schmitt F, et al. Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet. 1997;15(1):42–6.

    PubMed  Google Scholar 

  105. Howard TD, Paznekas WA, Green ED, et al. Mutations in TWIST, a basic helix-loop-helix transcription factor Saethre-Chotzen syndrome. Nat Genet. 1997;15(1):36–41.

    PubMed  Google Scholar 

  106. Niemann S, Zhao C, Pascu F, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74(3):558–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Ludwig KU, Bohmer AC, Rubini M, et al. Strong association of variants around FOXE1 and orofacial clefting. J Dent Res. 2014;93(4):376–81.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank our colleagues for generating the literature contributing to this review and we apologize for being unable to cite all of the relevant papers. This work was supported in part by NIH grants K99-DE025060 and R01-DE016148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary L. Marazita.

Ethics declarations

Disclosure

EJ Leslie and ML Marazita both declare no conflict of interest.

Human and Animal Rights and Informed Consent

All studies by EJ Leslie and/or ML Marazita involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Additional information

This article is part of the Topical Collection on Clinical Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leslie, E.J., Marazita, M.L. Genetics of Orofacial Cleft Birth Defects. Curr Genet Med Rep 3, 118–126 (2015). https://doi.org/10.1007/s40142-015-0074-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-015-0074-x

Keywords

Navigation