Skip to main content

Advertisement

Log in

Breast Cancer Risk Gene Discovery: Opportunities and Challenges

  • Cancer Genetics (D Goldgar & M Southey, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

DNA-based testing has become routine in modern health care. Today, genetic testing for BRCA1 or BRCA2 germline mutations is routinely offered to women with personal and/or family history of breast cancer (BC) and/or ovarian cancer (OC). The identification of a pathogenic mutation in an index case allows relatives to be offered predictive testing and to provide clinical advice-related risk management to women with a high risk of BC and OC. A pathogenic BRCA1 or BRCA2 mutation is identified in less than 20 % of index cases tested, while variants of unknown biological and clinical significance (VUS) are detected in at least another 10 %. Additional BC predisposition genes (PALB2, RAD51C, RAD51D, XRCC2, RINT1, etc.) have been recently identified, and as a consequence of the introduction of new sequencing technologies into clinical testing laboratories, some of these genes are already being screened as part of gene panel testing. However, the use of these new BC-predisposing genes remains limited in clinical practice because their associated cancer risks are not precisely estimated at the present time due to the small number of families that are known to carry variants in these genes. Many more BC and OC genes with an expected wide range of associated risks remain unidentified. In this review, we will focus on recent advances in the field of BC genetics and will discuss future challenges for clinical utility of new tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Domchek SM, Weber BL. Clinical management of BRCA1 and BRCA2 mutation carriers. Oncogene. 2006;25(43):5825–31.

    Article  CAS  PubMed  Google Scholar 

  2. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  3. Lu Y, Ek WE, Whiteman D, et al. Most common ‘sporadic’ cancers have a significant germline genetic component. Hum Mol Genet. 2014;23:6112–8.

    Article  PubMed  Google Scholar 

  4. Stratton MR, Rahman N. The emerging landscape of breast cancer susceptibility. Nat Genet. 2008;40(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  5. •• Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447(7148):1087–93. Conducted the first genome scan on breast cancer using a three-stage design and combining 22 case-control studies (>44,000 subjects).

  6. Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet. 2007;39(7):870–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Stacey SN, Manolescu A, Sulem P, et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet. 2007;39(7):865–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rahman N, Seal S, Thompson D, et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007;39(2):165–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. • Park DJ, Lesueur F, Nguyen-Dumont T, et al. Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet. 2012;90(4):734–9. Demonstrate the power of massively parallel sequencing in the discovery of additional breast cancer susceptibility genes when used with an appropriate study design involving both a multiple-case family study and population-based case-control mutation screening.

  10. • Park DJ, Tao K, Le Calvez-Kelm F, et al. Rare mutations in RINT1 predispose carriers to breast and Lynch syndrome-spectrum cancers. Cancer Discov. 2014;4(7):804–15. Identified a link between rare mutations in RINT1 and hereditary breast cancer and support the possibility that these mutations also predispose to a spectrum of cancers with mismatch repair defects.

  11. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266(5182):66–71.

    Article  CAS  PubMed  Google Scholar 

  12. Wooster R, Bignell G, Lancaster J, et al. Identification of the breast cancer susceptibility gene BRCA2. Nature. 1995;378(6559):789–92.

    Article  CAS  PubMed  Google Scholar 

  13. Tavtigian SV, Simard J, Rommens J, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12(3):333–7.

    Article  CAS  PubMed  Google Scholar 

  14. Smith TM, Lee MK, Szabo CI, et al. Complete genomic sequence and analysis of 117 kb of human DNA containing the gene BRCA1. Genome Res. 1996;6(11):1029–49.

    Article  CAS  PubMed  Google Scholar 

  15. Venkitaraman AR. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science. 2014;343(6178):1470–5.

    Article  CAS  PubMed  Google Scholar 

  16. Miller BJ, Wang D, Krahe R, Wright FA. Pooled analysis of loss of heterozygosity in breast cancer: a genome scan provides comparative evidence for multiple tumor suppressors and identifies novel candidate regions. Am J Hum Genet. 2003;73(4):748–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Osorio A, de la Hoya M, Rodriguez-Lopez R, et al. Loss of heterozygosity analysis at the BRCA loci in tumor samples from patients with familial breast cancer. Int J Cancer. 2002;99(2):305–9.

    Article  CAS  PubMed  Google Scholar 

  18. Caputo S, Benboudjema L, Sinilnikova O, Rouleau E, Beroud C, Lidereau R. Description and analysis of genetic variants in French hereditary breast and ovarian cancer families recorded in the UMD-BRCA1/BRCA2 databases. Nucleic Acids Res. 2012;40(Database issue):D992–1002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev. 2004;4(9):665–76.

    Article  CAS  Google Scholar 

  20. Gomez-Garcia EB, Ambergen T, Blok MJ, van den Wijngaard A. Patients with an unclassified genetic variant in the BRCA1 or BRCA2 genes show different clinical features from those with a mutation. J Clin Oncol. 2005;23(10):2185–90.

    Article  CAS  PubMed  Google Scholar 

  21. Vallee MP, Francy TC, Judkins MK, et al. Classification of missense substitutions in the BRCA genes: a database dedicated to Ex-UVs. Hum Mutat. 2012;33(1):22–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Goldgar DE, Easton DF, Deffenbaugh AM, et al. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet. 2004;75(4):535–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. •• Plon SE, Eccles DM, Easton D, et al. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum Mutat. 2008;29(11):1282–91. Developed rationale and guidelines for the integrated evaluation of BRCA1 and BRCA2 VUS to improve the interpretation of genetic test results.

  24. Easton DF, Deffenbaugh AM, Pruss D, et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am J Hum Genet. 2007;81(5):873–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Spurdle AB, Lakhani SR, Da Silva LM, Balleine RL, kConFab I, DE Goldgar. Bayes analysis provides evidence of pathogenicity for the BRCA1 c.135-1G > T (IVS3-1) and BRCA2 c.7977-1G > C (IVS17-1) variants displaying in vitro splicing results of equivocal clinical significance. Hum Mutat. 2010;31(2):E1141–5.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Chenevix-Trench G, Healey S, Lakhani S, et al. Genetic and histopathologic evaluation of BRCA1 and BRCA2 DNA sequence variants of unknown clinical significance. Cancer Res. 2006;66(4):2019–27.

    Article  CAS  PubMed  Google Scholar 

  27. Tavtigian SV, Samollow PB, de Silva D, Thomas A. An analysis of unclassified missense substitutions in human BRCA1. Fam Cancer. 2006;5(1):77–88.

    Article  CAS  PubMed  Google Scholar 

  28. Spurdle AB, Healey S, Devereau A, et al. ENIGMA—evidence-based network for the interpretation of germline mutant alleles: an international initiative to evaluate risk and clinical significance associated with sequence variation in BRCA1 and BRCA2 genes. Hum Mutat. 2012;33(1):2–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Vos JR, Teixeira N, van der Kolk DM, et al. Variation in mutation spectrum partly explains regional differences in the breast cancer risk of female BRCA mutation carriers in the Netherlands. Cancer Epidemiol Biomarkers Prev. 2014;23:2482–91.

    Article  CAS  PubMed  Google Scholar 

  31. Tryggvadottir L, Sigvaldason H, Olafsdottir GH, et al. Population-based study of changing breast cancer risk in Icelandic BRCA2 mutation carriers, 1920–2000. J Natl Cancer Inst. 2006;98(2):116–22.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson D, Easton D, Breast Cancer Linkage C. Variation in cancer risks, by mutation position, in BRCA2 mutation carriers. Am J Hum Genet. 2001;68(2):410–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Thompson D, Easton D, Breast Cancer Linkage C. Variation in BRCA1 cancer risks by mutation position. Cancer Epidemiol Biomarkers Prev. 2002;11(4):329–36.

    CAS  PubMed  Google Scholar 

  34. Lecarpentier J, Nogues C, Mouret-Fourme E, et al. Variation in breast cancer risk associated with factors related to pregnancies according to truncating mutation location, in the French National BRCA1 and BRCA2 mutations carrier cohort (GENEPSO). Breast Cancer Res. 2012;14(4):R99.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lecarpentier J, Nogues C, Mouret-Fourme E, et al. Variation in breast cancer risk with mutation position, smoking, alcohol, and chest X-ray history, in the French National BRCA1/2 carrier cohort (GENEPSO). Breast Cancer Res Treat. 2011;130(3):927–38.

    Article  CAS  PubMed  Google Scholar 

  36. Andrieu N, Easton DF, Chang-Claude J, et al. Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators’ Group. J Clin Oncol. 2006;24(21):3361–6.

    Article  CAS  PubMed  Google Scholar 

  37. Andrieu N, Goldgar DE, Easton DF, et al. Pregnancies, breast-feeding, and breast cancer risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J Natl Cancer Inst. 2006;98(8):535–44.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Brohet RM, Goldgar DE, Easton DF, et al. Oral contraceptives and breast cancer risk in the international BRCA1/2 carrier cohort study: a report from EMBRACE, GENEPSO, GEO-HEBON, and the IBCCS Collaborating Group. J Clin Oncol. 2007;25(25):3831–6.

    Article  PubMed  Google Scholar 

  39. Chang-Claude J, Andrieu N, Rookus M, et al. Age at menarche and menopause and breast cancer risk in the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol Biomarkers Prev. 2007;16(4):740–6.

    Article  PubMed  Google Scholar 

  40. Antoniou AC, Beesley J, McGuffog L, et al. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res. 2010;70(23):9742–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Antoniou AC, Kartsonaki C, Sinilnikova OM, et al. Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet. 2011;20(16):3304–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Mulligan AM, Couch FJ, Barrowdale D, et al. Common breast cancer susceptibility alleles are associated with tumour subtypes in BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2. Breast Cancer Res. 2011;13(6):R110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mavaddat N, Barrowdale D, Andrulis IL, et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev. 2012;21(1):134–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Antoniou AC, Kuchenbaecker KB, Soucy P, et al. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. Breast Cancer Res. 2012;14(1):R33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Couch FJ, Wang X, McGuffog L, et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet. 2013;9(3):e1003212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Damiola F, Pertesi M, Oliver J, et al. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: results from a Breast Cancer Family Registry case-control mutation-screening study. Breast Cancer Res. 2014;16(3):R58.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Fletcher O, Johnson N, Dos Santos Silva I, et al. Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2 1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev. 2009;18(1):230–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. So HC, Gui AH, Cherny SS, Sham PC. Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol. 2011;35(5):310–7.

    Article  PubMed  Google Scholar 

  49. Cox A, Dunning AM, Garcia-Closas M, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet. 2007;39(3):352–8.

    Article  CAS  PubMed  Google Scholar 

  50. Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst. 2006;98(19):1382–96.

    Article  Google Scholar 

  51. Ghoussaini M, Pharoah PD. Polygenic susceptibility to breast cancer: current state-of-the-art. Future oncology. 2009;5(5):689–701.

    Article  PubMed  Google Scholar 

  52. Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353–61 61e1-2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Antoniou AC, Easton DF. Models of genetic susceptibility to breast cancer. Oncogene. 2006;25(43):5898–905.

    Article  CAS  PubMed  Google Scholar 

  54. Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002;31(1):33–6.

    Article  CAS  PubMed  Google Scholar 

  55. Harlid S, Ivarsson MI, Butt S, et al. Combined effect of low-penetrant SNPs on breast cancer risk. Br J Cancer. 2012;106(2):389–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Hein R, Maranian M, Hopper JL, et al. Comparison of 6q25 breast cancer hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS One. 2012;7(8):e42380.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Nickels S, Truong T, Hein R, et al. Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet. 2013;9(3):e1003284.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Sakoda LC, Jorgenson E, Witte JS. Turning of COGS moves forward findings for hormonally mediated cancers. Nat Genet. 2013;45(4):345–8.

    Article  CAS  PubMed  Google Scholar 

  59. Smith P, McGuffog L, Easton DF, et al. A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer. 2006;45(7):646–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Huusko P, Juo SH, Gillanders E, et al. Genome-wide scanning for linkage in Finnish breast cancer families. Eur J Hum Genet. 2004;12(2):98–104.

    Article  CAS  PubMed  Google Scholar 

  61. Tavtigian SV, Oefner PJ, Babikyan D, et al. Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet. 2009;85(4):427–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006;38(8):873–5.

    Article  CAS  PubMed  Google Scholar 

  63. Le Calvez-Kelm F, Lesueur F, Damiola F, et al. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry (CFR) case-control mutation screening study. Breast Cancer Res. 2011;13(1):R6.

    Article  PubMed Central  PubMed  Google Scholar 

  64. •• Antoniou AC, Casadei S, Heikkinen T, et al. Breast-cancer risk in families with mutations in PALB2. New Engl J Med. 2014;371(6):497–506. First study estimating lifetime risk of breast cancer in families with germline loss-of-function mutations in PALB2 and suggesting the breast cancer risk for PALB2 mutation carriers may overlap with that of BRCA2 mutation carriers.

  65. Southey MC, Teo ZL, Dowty JG, et al. A PALB2 mutation associated with high risk of breast cancer. Breast Cancer Res. 2010;12(6):R109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Southey MC, Teo ZL, Winship I. PALB2 and breast cancer: ready for clinical translation! Appl Clin Genet. 2013;6:43–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Blanco A, Gutierrez-Enriquez S, Santamarina M, et al. RAD51C germline mutations found in Spanish site-specific breast cancer and breast-ovarian cancer families. Breast Cancer Res Treat. 2014;147(1):133–43.

    Article  CAS  PubMed  Google Scholar 

  68. Kushnir A, Laitman Y, Shimon SP, Berger R, Friedman E. Germline mutations in RAD51C in Jewish high cancer risk families. Breast Cancer Res Treat. 2012;136(3):869–74.

    Article  CAS  PubMed  Google Scholar 

  69. Gutierrez-Enriquez S, Bonache S, de Garibay GR, et al. About 1 % of the breast and ovarian Spanish families testing negative for BRCA1 and BRCA2 are carriers of RAD51D pathogenic variants. Int J Cancer. 2014;134(9):2088–97.

    Article  CAS  PubMed  Google Scholar 

  70. Thompson ER, Rowley SM, Sawyer S, et al. Analysis of RAD51D in ovarian cancer patients and families with a history of ovarian or breast cancer. PLoS One. 2013;8(1):e54772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Swift M, Reitnauer PJ, Morrell D, Chase CL. Breast and other cancers in families with ataxia-telangiectasia. New Engl J Med. 1987;316(21):1289–94.

    Article  CAS  PubMed  Google Scholar 

  72. Swift M, Morrell D, Massey RB, Chase CL. Incidence of cancer in 161 families affected by ataxia-telangiectasia. New Engl J Med. 1991;325(26):1831–6.

    Article  CAS  PubMed  Google Scholar 

  73. Thompson D, Duedal S, Kirner J, et al. Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst. 2005;97(11):813–22.

    Article  CAS  PubMed  Google Scholar 

  74. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the nordic countries. J Natl Cancer Inst. 2001;93(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  75. d’Almeida AK, Cavaciuti E, Dondon MG, et al. Increased risk of breast cancer among female relatives of patients with ataxia-telangiectasia: a causal relationship? Br J Cancer. 2005;93(6):730–2 author reply 2.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Tavtigian SV, Byrnes GB, Goldgar DE, Thomas A. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Hum Mutat. 2008;29(11):1342–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Consortium CBCC-C. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004;74(6):1175–82.

    Article  Google Scholar 

  78. Kilpivaara O, Vahteristo P, Falck J, et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int J Cancer. 2004;111(4):543–7.

    Article  CAS  PubMed  Google Scholar 

  79. Desrichard A, Bidet Y, Uhrhammer N, Bignon YJ. CHEK2 contribution to hereditary breast cancer in non-BRCA families. Breast Cancer Res. 2011;13(6):R119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Tavtigian SV, Chenevix-Trench G. Growing recognition of the role for rare missense substitutions in breast cancer susceptibility. Biomark Med. 2014;8(4):589–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Casadei S, Norquist BM, Walsh T, et al. Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res. 2011;71(6):2222–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Antoniou A, Pharoah PD, Narod S, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72(5):1117–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Deans B, Griffin CS, O’Regan P, Jasin M, Thacker J. Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice. Cancer Res. 2003;63(23):8181–7.

    CAS  PubMed  Google Scholar 

  84. John EM, Hopper JL, Beck JC, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Hilbers FS, Wijnen JT, Hoogerbrugge N, et al. Rare variants in XRCC2 as breast cancer susceptibility alleles. J Med Genet. 2012;49(10):618–20.

    Article  CAS  PubMed  Google Scholar 

  86. COMPLEXO, Southey MC, Park DJ, et al. COMPLEXO: identifying the missing heritability of breast cancer via next generation collaboration. Breast Cancer Res. 2013;15(3):402.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dominique Stoppa-Lyonnet, Nadine Andrieu and Melissa Southey for reviewing and commenting on this manuscript.

Disclosure

F. Lesueur declares no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by F. Lesueur involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Lesueur.

Additional information

This article is part of the Topical Collection on Cancer Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesueur, F. Breast Cancer Risk Gene Discovery: Opportunities and Challenges. Curr Genet Med Rep 3, 82–91 (2015). https://doi.org/10.1007/s40142-015-0066-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-015-0066-x

Keywords

Navigation