Skip to main content
Log in

Epigenetic Developmental Disorders: CHARGE Syndrome, a Case Study

  • Neurogenetics and Psychiatric Genetics (M Hiltunen & DR Marenda, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Epigenetic events including chromatin remodeling and histone modifications have recently emerged as important contributors to a variety of neurodevelopmental disorders. This review focuses on CHARGE syndrome, a multiple anomaly condition caused by mutations in the gene encoding CHD7, an ATP-dependent chromatin remodeling protein. CHD7 exhibits pleiotropic effects during embryonic development, consistent with highly variable clinical features in CHARGE syndrome. In this review, a historical description of CHARGE is provided, followed by establishment of diagnostic criteria, gene discovery, and development of animal models. Current understanding of epigenetic CHD7 functions and interacting proteins in cells and tissues is also presented, and final emphasis is placed on challenges and major questions to be answered with ongoing research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36(9):955–7.

    Article  CAS  PubMed  Google Scholar 

  2. Issekutz KA, Graham JM Jr, Prasad C, Smith IM, Blake KD. An epidemiological analysis of CHARGE syndrome: preliminary results from a Canadian study. Am J Med Genet A. 2005;133(3):309–17.

    Article  Google Scholar 

  3. Kallen K, Robert E, Mastroiacovo P, Castilla EE, Kallen B. CHARGE association in newborns: a registry-based study. Teratology. 1999;60(6):334–43.

    Article  CAS  PubMed  Google Scholar 

  4. Hall BD. Choanal atresia and associated multiple anomalies. J Pediatr. 1979;95(3):395–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hittner HM, Hirsch NJ, Kreh GM, Rudolph AJ. Colobomatous microphthalmia, heart disease, hearing loss, and mental retardation—a syndrome. J Pediatr Ophthalmol Strabismus. 1979;16(2):122–8.

    CAS  PubMed  Google Scholar 

  6. Pagon RA, Graham JM Jr, Zonana J, Yong SL. Coloboma, congenital heart disease, and choanal atresia with multiple anomalies: CHARGE association. J Pediatr. 1981;99(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  7. Blake KD, Davenport SL, Hall BD, et al. CHARGE association: an update and review for the primary pediatrician. Clin Pediatr. 1998;37(3):159–73.

    Article  CAS  Google Scholar 

  8. Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A. 2005;133(3):306–8.

    Article  Google Scholar 

  9. Martin DM, Probst FJ, Fox SE, et al. Exclusion of PITX2 mutations as a major cause of CHARGE association. Am J Med Genet. 2002;111(1):27–30.

    Article  PubMed  Google Scholar 

  10. •• Janssen N, Bergman JE, Swertz MA, et al. Mutation update on the CHD7 gene involved in CHARGE syndrome. Hum Mutat. 2012; 33(8):1149–1160. This paper summarizes recent genotype-phenotype information about individuals with CHARGE syndrome. It also highlights a publicly available database, www.chd7.org, for CHD7 mutations and their classification.

  11. •• Bouazoune K, Kingston RE. Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA. 2012; 109(47):19238–19243. Bouazoune and Kingston provide the first evidence that CHD7 in an ATP-dependent chromatin remodeling protein, with roles in regulation of nucleosome position and restriction enzyme accessibility to chromatin and DNA. They also show that mutations in CHD7 association with CHARGE syndrome disrupt these nuclear functions.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lalani SR, Safiullah AM, Fernbach SD, et al. Spectrum of CHD7 mutations in 110 Individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet. 2006;78(2):303–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Jongmans MC, Admiraal RJ, van der Donk KP, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43(4):306–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Aramaki M, Udaka T, Kosaki R, et al. Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr. 2006;148(3):410–4.

    Article  CAS  PubMed  Google Scholar 

  15. Sanlaville D, Etchevers HC, Gonzales M, et al. Phenotypic spectrum of CHARGE syndrome in fetuses with CHD7 truncating mutations correlates with expression during human development. J Med Genet. 2006;43(3):211–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kim HG, Kurth I, Lan F, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Felix TM, Hanshaw BC, Mueller R, Bitoun P, Murray JC. CHD7 gene and non-syndromic cleft lip and palate. Am J Med Genet A. 2006;140(19):2110–4.

    Article  PubMed  Google Scholar 

  18. Green GE, Huq FS, Emery SB, Mukherji SK, Martin DM. CHD7 mutations and CHARGE syndrome in semicircular canal dysplasia. Otol Neurotol. 2014;35(8):1466–70.

    Article  PubMed  Google Scholar 

  19. Corsten-Janssen N, du Marchie Sarvaas GJ, Kerstjens-Frederikse WS, et al. CHD7 mutations are not a major cause of atrioventricular septal and conotruncal heart defects. Am J Med Genet A. 2014;164(12):3003–9.

    Article  CAS  Google Scholar 

  20. Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Tucker T, Zahir FR, Griffith M, et al. Single exon-resolution targeted chromosomal microarray analysis of known and candidate intellectual disability genes. Eur J Hum Genet. 2014;22(6):792–800.

    Article  CAS  PubMed  Google Scholar 

  22. Jiang YH, Yuen RK, Jin X, et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am J Hum Genet. 2013. doi:10.1016/j.ajhg.2013.06.012.

    PubMed Central  PubMed  Google Scholar 

  23. O’Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246–50.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zentner GE, Layman WS, Martin DM, Scacheri PC. Molecular and phenotypic aspects of CHD7 mutation in CHARGE syndrome. Am J Med Genet A. 2010;152A(3):674–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Bergman JE, Janssen N, Hoefsloot LH, Jongmans MC, Hofstra RM, van Ravenswaaij-Arts CM. CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype. J Med Genet. 2011;48(5):334–42.

    Article  CAS  PubMed  Google Scholar 

  26. Schnetz MP, Bartels CF, Shastri K, et al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns. Genome Res. 2009;19(4):590–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Schnetz MP, Handoko L, Akhtar-Zaidi B, et al. CHD7 targets active gene enhancer elements to modulate ES cell-specific gene expression. PLoS Genet. 2010;6(7):e1001023.

    Article  PubMed Central  PubMed  Google Scholar 

  28. • Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res. 2011; 21(8):1273–1283. Zentner and colleagues demonstrate that CHD7 binds to “poised” enhancers, which show preference for regulation of ectodermal derivatives. This study, combined with their earlier reports, confirm that CHD7 has a broad repertoire of binding sites in the mammalian genome, including transcription start sites and enhancer regions.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. • Micucci JA, Layman WS, Hurd EA, et al. CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet. 2014; 23(2):434–448 The authors of this study provide the first evidence that changes in retinoic acid signaling can influence the developmental effects of CHD7 on inner ear development. Using a combination of mouse genetics and in vitro neural stem cell assays, they show that CHD7 is a key regulator of neural stem cell proliferation and that CHD7 deficiency leads to impaired neuronal development in the brain.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hurd EA, Capers PL, Blauwkamp MN, et al. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome. 2007;18(2):94–104.

    Article  CAS  PubMed  Google Scholar 

  31. Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet. 2005;14(22):3463–76.

    Article  CAS  PubMed  Google Scholar 

  32. Melicharek DJ, Ramirez LC, Singh S, Thompson R, Marenda DR. Kismet/CHD7 regulates axon morphology, memory and locomotion in a Drosophila model of CHARGE syndrome. Hum Mol Genet. 2010;19(21):4253–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Srinivasan S, Armstrong JA, Deuring R, Dahlsveen IK, McNeill H, Tamkun JW. The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA polymerase II. Development. 2005;132(7):1623–35.

    Article  CAS  PubMed  Google Scholar 

  34. Daubresse G, Deuring R, Moore L, et al. The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development. 1999;126(6):1175–87.

    CAS  PubMed  Google Scholar 

  35. Patten SA, Jacobs-McDaniels NL, Zaouter C, Drapeau P, Albertson RC, Moldovan F. Role of Chd7 in zebrafish: a model for CHARGE syndrome. PLoS One. 2012;7(2):e31650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Balow SA, Pierce LX, Zentner GE, et al. Knockdown of fbxl10/kdm2bb rescues chd7 morphant phenotype in a zebrafish model of CHARGE syndrome. Dev Biol. 2013;382(1):57–69.

    Article  CAS  PubMed  Google Scholar 

  37. Bajpai R, Chen DA, Rada-Iglesias A, et al. CHD7 cooperates with PBAF to control multipotent neural crest formation. Nature. 2010;463(7283):958–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. •• Van Nostrand JL, Brady CA, Jung H, et al. Inappropriate p53 activation during development induces features of CHARGE syndrome. Nature. 2014. doi::10.1038/nature13585. This manuscript shows that the activation of the tumor suppressor p53 is associated with some features of CHARGE syndrome in mice. The authors also present evidence that CHD7 binds to and suppresses p53, suggesting that CHD7 is also involved in regulation of cell survival.

    PubMed  Google Scholar 

  39. Takada I, Mihara M, Suzawa M, et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007;9(11):1273–85.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Xiong Y, Shang C, et al. Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci USA. 2013;110(5):1738–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Liu Y, Harmelink C, Peng Y, Chen Y, Wang Q, Jiao K. CHD7 interacts with BMP R-SMADs to epigenetically regulate cardiogenesis in mice. Hum Mol Genet. 2014;23(8):2145–56.

    Article  CAS  PubMed  Google Scholar 

  42. Batsukh T, Pieper L, Koszucka AM, et al. CHD8 interacts with CHD7, a protein which is mutated in CHARGE syndrome. Hum Mol Genet. 2010;19(14):2858–66.

    Article  CAS  PubMed  Google Scholar 

  43. Batsukh T, Schulz Y, Wolf S, et al. Identification and characterization of FAM124B as a novel component of a CHD7 and CHD8 containing complex. PLoS One. 2012;7(12):e52640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bernier R, Golzio C, Xiong B, et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014;158(2):263–76.

    Article  CAS  PubMed  Google Scholar 

  45. Krumm N, O’Roak BJ, Shendure J, Eichler EE. A de novo convergence of autism genetics and molecular neuroscience. Trends Neurosci. 2014;37(2):95–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. O’Roak BJ, Vives L, Fu W, et al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science. 2012;338(6114):1619–22.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Randall V, McCue K, Roberts C, et al. Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest. 2009;119(11):3301–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. • Schulz Y, Freese L, Manz J, et al. CHARGE and Kabuki syndromes: a phenotypic and molecular link. Hum Mol Genet. 2014;23(16):4396–4405. In this paper, the authors highlight the significant phenotypic similarity between CHARGE and Kabuki syndrome. Kabuki syndrome is caused by mutations in the KMT2D gene, which encodes a H3K4 histone methyltransferase. The authors further demonstrate that CHD7 and KMT2D also share interacting protein partners.

    Article  CAS  PubMed  Google Scholar 

  49. Schimmenti LA. Renal coloboma syndrome. Eur J Hum Genet. 2011;19(12):1207–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Song MH, Kwon TJ, Kim HR, et al. Mutational analysis of EYA1, SIX1 and SIX5 genes and strategies for management of hearing loss in patients with BOR/BO syndrome. PLoS One. 2013;8(6):e67236.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kleefstra T, Kramer JM, Neveling K, et al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am J Hum Genet. 2012;91(1):73–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lines MA, Huang L, Schwartzentruber J, et al. Haploinsufficiency of a spliceosomal GTPase encoded by EFTUD2 causes mandibulofacial dysostosis with microcephaly. Am J Hum Genet. 2012;90(2):369–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wenger TL, Harr M, Ricciardi S, et al. CHARGE-like presentation, craniosynostosis and mild Mowat-Wilson syndrome diagnosed by recognition of the distinctive facial gestalt in a cohort of 28 new cases. Am J Med Genet A. 2014;164(10):2557–66.

    Article  CAS  Google Scholar 

  54. Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DM Martin is supported by NIH R01-DC009410 and The University of Michigan Donita B. Sullivan MD Research Professorship Funds. She also serves as Chair of the Scientific Advisory Board of the CHARGE Syndrome Foundation. She receives reimbursement for travel to board meetings 1–2 times per year. She also received funds to support a local research symposium on chromatin and development.

Disclosure

DM Martin declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna M. Martin.

Additional information

This article is part of the Topical Collection on Neurogenetics and Psychiatric Genetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, D.M. Epigenetic Developmental Disorders: CHARGE Syndrome, a Case Study. Curr Genet Med Rep 3, 1–7 (2015). https://doi.org/10.1007/s40142-014-0059-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-014-0059-1

Keywords

Navigation