Skip to main content

Advertisement

Log in

Evaluation and Management of Radiation-Induced Plexopathies

  • Cancer Rehabilitation (C Kline-Quiroz, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of the review is to detail the pathophysiology, clinical signs and symptoms, and evaluation and management of patients with radiation-induced plexopathy (RIP). The specific cancer types, radiation treatment techniques, and the associated plexus neuroanatomy most susceptible to injury will be discussed.

Recent Findings

The latest research has not demonstrated a way to predict which patients will develop RIP. There is, however, a strong correlation to dosing, anatomical exposure, and pattern of damage and symptomatology. While there is no cure for RIP, advances in radiation delivery techniques have, for the most part, effectively minimized plexus exposure and thus the incidence and severity of RIP. Various surgical and nonsurgical therapies have been described with largely disappointing results. Some interventions, such as surgically implanted diaphragmatic pacemakers to treat hemidiaphragmatic paralysis, the use of ultrasound, and/or electromyography-guided botox injections to treat hypertonic muscles, are helpful in some cases. Advances in imaging techniques have helped to more accurately determine whether developing neurologic symptoms are due to RIP or neoplasm.

Summary

Patients who receive high-dose radiation therapy that involves one of the body plexuses are at risk for developing RIP. Unfortunately, predicting the severity, time course of symptoms, and progression of RIP remains elusive. There is a growing awareness among the healthcare community of the acute and late effects of radiation therapy, specifically radiation-induced plexopathy. Because there is no meaningful way to slow or reverse the progression of RIP, management is largely symptomatic. Patients should be comprehensively evaluated, followed closely, and educated on the chronic and progressive nature of RIP. A multidisciplinary approach that involves multiple clinicians such as physiatrists, physical therapists, occupational therapists, lymphedema management practitioners, and other clinicians are often indicated.. Further research is needed to develop more targeted radiation therapy treatments, prophylaxis to prevent or minimize RIP, and ultimately treatments that effectively reverse RIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193–9. https://doi.org/10.7150/ijms.3635.

    Article  Google Scholar 

  2. Stubblefield MD. Radiation fibrosis syndrome: neuromuscular and musculoskeletal complications in cancer survivors. PM R. 2011;3(11):1041–54. https://doi.org/10.1016/j.pmrj.2011.08.535.

    Article  Google Scholar 

  3. Purkayastha A, Sharma N, Sarin A, Bhatnagar S, Chakravarty N, Mukundan H, et al. Radiation fibrosis syndrome: the evergreen menace of radiation therapy. Asia Pac J Oncol Nurs. 2019;6(3):238–45. https://doi.org/10.4103/apjon.apjon_71_18.

    Article  Google Scholar 

  4. Jaeckle KA. Neurologic manifestations of neoplastic and radiation-induced plexopathies. Semin Neurol. 2010;30(3):254–62. https://doi.org/10.1055/s-0030-1255219.

    Article  Google Scholar 

  5. Stubblefield MD, Ibanez K, Riedel ER, Barzilai O, Laufer I, Lis E, et al. Peripheral nervous system injury after high-dose single-fraction image-guided stereotactic radiosurgery for spine tumors. Neurosurg Focus. 2017;42(3):E12. https://doi.org/10.3171/2016.11.FOCUS16348.

    Article  Google Scholar 

  6. O’Reilly M, Mellotte G, Ryan B, O’Connor A. Gastrointestinal side effects of cancer treatments. Ther Adv Chronic Dis. 2020;11:2040622320970354. https://doi.org/10.1177/2040622320970354.

    Article  CAS  Google Scholar 

  7. Pradat PF, Delanian S. Late radiation injury to peripheral nerves. Handb Clin Neurol. 2013;115:743–58. https://doi.org/10.1016/B978-0-444-52902-2.00043-6.

    Article  Google Scholar 

  8. Balentova S, Adamkov M. Molecular, Cellular and functional effects of radiation-induced brain injury: a review. Int J Mol Sci. 2015;16(11):27796–815. https://doi.org/10.3390/ijms161126068.

    Article  CAS  Google Scholar 

  9. Borek C. Antioxidants and radiation therapy. J Nutr. 2004;134(11):3207S-S3209. https://doi.org/10.1093/jn/134.11.3207S.

    Article  CAS  Google Scholar 

  10. Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don’t divide what’s to repair? Mutat Res. 2007;614(1–2):24–36. https://doi.org/10.1016/j.mrfmmm.2006.06.007.

    Article  CAS  Google Scholar 

  11. Delanian S, Lefaix JL. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway. Radiother Oncol. 2004;73(2):119–31. https://doi.org/10.1016/j.radonc.2004.08.021.

    Article  Google Scholar 

  12. Glenesk NL, Kortz MW, Lopez PP. Anatomy, head and neck, posterior cervical nerve plexus. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  13. Wilbourn AJ. Plexopathies. Neurol Clin. 2007;25(1):139–71. https://doi.org/10.1016/j.ncl.2006.11.005.

    Article  Google Scholar 

  14. • Azzam P, Mroueh M, Francis M, Daher AA, Zeidan YH. Radiation-induced neuropathies in head and neck cancer: prevention and treatment modalities. Ecancermedicalscience. 2020;14:1133. https://doi.org/10.3332/ecancer.2020.1133. ()

    Article  Google Scholar 

  15. Lee MW, McPhee RW, Stringer MD. An evidence-based approach to human dermatomes. Clin Anat. 2008;21(5):363–73. https://doi.org/10.1002/ca.20636.

    Article  CAS  Google Scholar 

  16. Mandoorah S, Mead T. Phrenic nerve injury. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  17. Skalsky AJ, Lesser DJ, McDonald CM. Evaluation of phrenic nerve and diaphragm function with peripheral nerve stimulation and M-mode ultrasonography in potential pediatric phrenic nerve or diaphragm pacing candidates. Phys Med Rehabil Clin N Am. 2015;26(1):133–43. https://doi.org/10.1016/j.pmr.2014.09.010.

    Article  Google Scholar 

  18. Martin AR, Reddy R, Fehlings MG. Dropped head syndrome: diagnosis and management. Evid Based Spine Care J. 2011;2(2):41–7. https://doi.org/10.1055/s-0030-1267104.

    Article  Google Scholar 

  19. Brodell JD Jr, Sulovari A, Bernstein DN, Mongiovi PC, Ciafaloni E, Rubery PT, et al. Dropped head syndrome: an update on etiology and surgical management. JBJS Rev. 2020;8(1): e0068. https://doi.org/10.2106/JBJS.RVW.19.00068.

    Article  Google Scholar 

  20. Enam N, Chou K, Stubblefield MD. Prevalence of function-limiting late effects in Hodgkin lymphoma survivors. PM R. 2022;14(7):811–7. https://doi.org/10.1002/pmrj.12662.

    Article  Google Scholar 

  21. DiFrancesco T, Khanna A, Stubblefield MD. Clinical evaluation and management of cancer survivors with radiation fibrosis syndrome. Semin Oncol Nurs. 2020;36(1): 150982. https://doi.org/10.1016/j.soncn.2019.150982.

    Article  Google Scholar 

  22. Jaffer NM, Ng E, Au FW, Steele CM. Fluoroscopic evaluation of oropharyngeal dysphagia: anatomic, technical, and common etiologic factors. AJR Am J Roentgenol. 2015;204(1):49–58. https://doi.org/10.2214/AJR.13.12374.

    Article  Google Scholar 

  23. Martino R, Silver F, Teasell R, Bayley M, Nicholson G, Streiner DL, et al. The Toronto Bedside Swallowing Screening Test (TOR-BSST): development and validation of a dysphagia screening tool for patients with stroke. Stroke. 2009;40(2):555–61. https://doi.org/10.1161/STROKEAHA.107.510370.

    Article  Google Scholar 

  24. Focht Garand KL, Hill EG, Armeson K, Martin-Harris B. Aging effects on Eating Assessment Tool-10 (EAT-10) total scores in healthy, community-dwelling adults. Can J Speech Lang Pathol Audiol. 2020;44(1):1–8.

    Google Scholar 

  25. Johnson J, Carlsson S, Johansson M, Pauli N, Ryden A, Fagerberg-Mohlin B, et al. Development and validation of the Gothenburg Trismus Questionnaire (GTQ). Oral Oncol. 2012;48(8):730–6. https://doi.org/10.1016/j.oraloncology.2012.02.013.

    Article  Google Scholar 

  26. Kokatnur L, Rudrappa M. Diaphragmatic palsy. Diseases. 2018;6(1):16. https://doi.org/10.3390/diseases6010016.

    Article  Google Scholar 

  27. • Sharma A, Raziq F, Kemnic T, Prasad R. Phrenic nerve palsy following radiation therapy for patient with breast cancer. Perm J. 2021;25. https://doi.org/10.7812/TPP/20.313.(In this case report, the patient underwent both brachytherapy followed by beam radiotherapy 16 years later for the treatment of recurrent breast cancer. The authors suggest that repeat high-dose radiation exposure increases the likelihood the patient’s radiation nerve palsy was secondary to high-dose radiation exposure.)

  28. Barkmeier-Kraemer JM, Clark HM. Speech-language pathology evaluation and management of hyperkinetic disorders affecting speech and swallowing function. Tremor Other Hyperkinet Mov (N Y). 2017;7:489. https://doi.org/10.7916/D8Z32B30.

    Article  Google Scholar 

  29. Thenganatt MA, Jankovic J. Treatment of dystonia. Neurotherapeutics. 2014;11(1):139–52. https://doi.org/10.1007/s13311-013-0231-4.

    Article  CAS  Google Scholar 

  30. Heredia Gutierrez A, CachonCamara GE, Gonzalez Carranza V, Torres Garcia S, Ponce Chico, de Leon F. Phrenic nerve neurotization utilizing half of the spinal accessory nerve to the functional restoration of the paralyzed diaphragm in high spinal cord injury secondary to brain tumor resection. Childs Nerv Syst. 2020;36(6):1307–10. https://doi.org/10.1007/s00381-019-04490-9.

    Article  Google Scholar 

  31. Orebaugh SL, Williams BA. Brachial plexus anatomy: normal and variant. Sci World J. 2009;9:300–12. https://doi.org/10.1100/tsw.2009.39.

    Article  Google Scholar 

  32. Polcaro L, Charlick M, Daly DT. Anatomy, head and neck, brachial plexus. Treasure Island (FL): StatPearls; 2022.

    Google Scholar 

  33. Bogduk N. The clinical anatomy of the cervical dorsal rami. Spine (Phila Pa 1976). 1982;7(4):319–30. https://doi.org/10.1097/00007632-198207000-00001.

    Article  CAS  Google Scholar 

  34. Patel M, Iwanaga J, Oskouian RJ, Tubbs RS. Communication between a dorsal and ventral ramus: a conflict for traditional anatomical teaching. Cureus. 2018;10(4): e2460. https://doi.org/10.7759/cureus.2460.

    Article  Google Scholar 

  35. Galecki J, Hicer-Grzenkowicz J, Grudzien-Kowalska M, Michalska T, Zalucki W. Radiation-induced brachial plexopathy and hypofractionated regimens in adjuvant irradiation of patients with breast cancer–a review. Acta Oncol. 2006;45(3):280–4. https://doi.org/10.1080/02841860500371907.

    Article  Google Scholar 

  36. de Oliveira AJM, Castro JPS, Foroni LH, Siqueira MG, Martins RS. Treatment of radiation-induced brachial plexopathy with omentoplasty. Autops Case Rep. 2020;10(3): e2020202. https://doi.org/10.4322/acr.2020.202.

    Article  Google Scholar 

  37. Sinha S, Pemmaiah D, Midha R. Management of brachial plexus injuries in adults: clinical evaluation and diagnosis. Neurol India. 2015;63(6):918–25. https://doi.org/10.4103/0028-3886.170114.

    Article  Google Scholar 

  38. Nunez FA, Papadonikolakis A, Li Z. Arthroscopic release of adhesive capsulitis of the shoulder complicated with shoulder dislocation and brachial plexus injury. J Surg Orthop Adv. 2016;25(2):114–6.

    Google Scholar 

  39. Jones MR, Prabhakar A, Viswanath O, Urits I, Green JB, Kendrick JB, et al. Thoracic outlet syndrome: a comprehensive review of pathophysiology, diagnosis, and treatment. Pain Ther. 2019;8(1):5–18. https://doi.org/10.1007/s40122-019-0124-2.

    Article  Google Scholar 

  40. Sanders RJ, Annest SJ. Pectoralis minor syndrome: subclavicular brachial plexus compression. Diagnostics (Basel). 2017;7(3):46. https://doi.org/10.3390/diagnostics7030046.

    Article  Google Scholar 

  41. Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, imaging, and pathologic conditions of the brachial plexus. Radiographics. 2020;40(6):1686–714. https://doi.org/10.1148/rg.2020200012.

    Article  Google Scholar 

  42. van Es HW, Engelen AM, Witkamp TD, Ramos LM, Feldberg MA. Radiation-induced brachial plexopathy: MR imaging. Skeletal Radiol. 1997;26(5):284–8. https://doi.org/10.1007/s002560050236.

    Article  Google Scholar 

  43. Lovaglio AC, Socolovsky M, Di Masi G, Bonilla G. Treatment of neuropathic pain after peripheral nerve and brachial plexus traumatic injury. Neurol India. 2019;67(Supplement):S32–7. https://doi.org/10.4103/0028-3886.250699.

    Article  Google Scholar 

  44. Chinchalkar SJ, Larocerie-Salgado J, Cepek J, Grenier ML. The use of dynamic assist orthosis for muscle reeducation following brachial plexus injury and reconstruction. J Hand Microsurg. 2018;10(3):172–7. https://doi.org/10.1055/s-0038-1642068.

    Article  Google Scholar 

  45. Jammeh ML, Yang A, Abuirqeba AA, Ohman JW, Thompson RW. Reoperative brachial plexus neurolysis after previous anatomically complete supraclavicular decompression for neurogenic thoracic outlet syndrome: a 10-year single-center case series. Oper Neurosurg (Hagerstown). 2022;23(2):125–32. https://doi.org/10.1227/ons.0000000000000252.

    Article  Google Scholar 

  46. Gebreyohanes AMH, Ahmed AI, Choi D. Dorsal Root Entry Zone Lesioning for brachial plexus avulsion: a comprehensive literature review. Oper Neurosurg (Hagerstown). 2021;20(4):324–33. https://doi.org/10.1093/ons/opaa447.

    Article  Google Scholar 

  47. Eickmeyer SM. Anatomy and physiology of the pelvic floor. Phys Med Rehabil Clin N Am. 2017;28(3):455–60. https://doi.org/10.1016/j.pmr.2017.03.003.

    Article  Google Scholar 

  48. Fann AV. Anatomy and evaluation of the lumbosacral plexus. Phys Med Rehabil Clin N Am. 1998;9(4):815–29.

    Article  CAS  Google Scholar 

  49. Fehlings MG, Tighe A. Anatomy of the sacral nerve roots: clinical implications for neural repair. J Neurosurg Spine. 2009;11(3):253–4. https://doi.org/10.3171/2009.4.SPINE00247 (discussion 4).

    Article  Google Scholar 

  50. Dyck PJ, Thaisetthawatkul P. Lumbosacral plexopathy. Continuum (Minneap Minn). 2014;20(5):1343–58. https://doi.org/10.1212/01.CON.0000455877.60932.d3.

    Article  Google Scholar 

  51. Rubin DI. Brachial and lumbosacral plexopathies: a review. Clin Neurophysiol Pract. 2020;5:173–93. https://doi.org/10.1016/j.cnp.2020.07.005.

    Article  Google Scholar 

  52. Shimazaki H, Nakano I. Radiation myelopathy and plexopathy. Brain Nerve. 2008;60(2):115–21.

    Google Scholar 

  53. Jeon CH, Chung NS, Lee YS, Son KH, Kim JH. Assessment of hip abductor power in patients with foot drop: a simple and useful test to differentiate lumbar radiculopathy and peroneal neuropathy. Spine (Phila Pa 1976). 2013;38(3):257–63. https://doi.org/10.1097/BRS.0b013e318268c8bc.

    Article  Google Scholar 

  54. Iglicki F, Coffin B, Ille O, Flourie B, Amarenco G, Lemann M, et al. Fecal incontinence after pelvic radiotherapy: evidences for a lumbosacral plexopathy. Report of a case. Dis Colon Rectum. 1996;39(4):465–7. https://doi.org/10.1007/BF02054065.

    Article  CAS  Google Scholar 

  55. Otterson MF. Effects of radiation upon gastrointestinal motility. World J Gastroenterol. 2007;13(19):2684–92. https://doi.org/10.3748/wjg.v13.i19.2684.

    Article  Google Scholar 

  56. Jorge JM, Wexner SD. Etiology and management of fecal incontinence. Dis Colon Rectum. 1993;36(1):77–97. https://doi.org/10.1007/BF02050307.

    Article  CAS  Google Scholar 

  57. Summers RW, Glenn CE, Flatt AJ, Elahmady A. Does irradiation produce irreversible changes in canine jejunal myoelectric activity? Dig Dis Sci. 1992;37(5):716–22. https://doi.org/10.1007/BF01296428.

    Article  CAS  Google Scholar 

  58. Francois A, Ksas B, Gourmelon P, Griffiths NM. Changes in 5-HT-mediated pathways in radiation-induced attenuation and recovery of ion transport in rat colon. Am J Physiol Gastrointest Liver Physiol. 2000;278(1):G75-82. https://doi.org/10.1152/ajpgi.2000.278.1.G75.

    Article  CAS  Google Scholar 

  59. Rao M, Gershon MD. The bowel and beyond: the enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol. 2016;13(9):517–28. https://doi.org/10.1038/nrgastro.2016.107.

    Article  CAS  Google Scholar 

  60. Szarka LA, Camilleri M. Methods for measurement of gastric motility. Am J Physiol Gastrointest Liver Physiol. 2009;296(3):G461–75. https://doi.org/10.1152/ajpgi.90467.2008.

    Article  CAS  Google Scholar 

  61. Anwar M, Ahmad S, Akhtar R, Mahmood A, Mahmood S. Antioxidant supplementation: a linchpin in radiation-induced enteritis. Technol Cancer Res Treat. 2017;16(6):676–91. https://doi.org/10.1177/1533034617707598.

    Article  CAS  Google Scholar 

  62. Aykin-Burns N, Pathak R, Boerma M, Kim T, Hauer-Jensen M. Utilization of vitamin E analogs to protect normal tissues while enhancing antitumor effects. Semin Radiat Oncol. 2019;29(1):55–61. https://doi.org/10.1016/j.semradonc.2018.10.008.

    Article  Google Scholar 

  63. Miller AL. Should antioxidants be used in cancer therapy? Altern Med Rev. 1999;4(5):303.

    CAS  Google Scholar 

  64. Ortmann EK, Mayerhofer T, Getoff N, Kodym R. Effect of antioxidant vitamins on radiation-induced apoptosis in cells of a human lymphoblastic cell line. Radiat Res. 2004;161(1):48–55. https://doi.org/10.1667/rr3102.

    Article  CAS  Google Scholar 

  65. Clarke RE, Tenorio LM, Hussey JR, Toklu AS, Cone DL, Hinojosa JG, et al. Hyperbaric oxygen treatment of chronic refractory radiation proctitis: a randomized and controlled double-blind crossover trial with long-term follow-up. Int J Radiat Oncol Biol Phys. 2008;72(1):134–43. https://doi.org/10.1016/j.ijrobp.2007.12.048.

    Article  CAS  Google Scholar 

  66. Jian Y, Zhang D, Liu M, Wang Y, Xu ZX. The impact of gut microbiota on radiation-induced enteritis. Front Cell Infect Microbiol. 2021;11: 586392. https://doi.org/10.3389/fcimb.2021.586392.

    Article  CAS  Google Scholar 

  67. Lefevre JH, Amiot A, Joly F, Bretagnol F, Panis Y. Risk of recurrence after surgery for chronic radiation enteritis. Br J Surg. 2011;98(12):1792–7. https://doi.org/10.1002/bjs.7655.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of Interest

Noble Jones and Michael D. Stubblefield declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, N., Stubblefield, M.D. Evaluation and Management of Radiation-Induced Plexopathies. Curr Phys Med Rehabil Rep 10, 345–354 (2022). https://doi.org/10.1007/s40141-022-00374-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-022-00374-3

Keywords

Navigation