Skip to main content
Log in

Role of Ultrasound in Managing Hamstring Muscle Injuries

  • Musculoskeletal Rehabilitation (K Onishi, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Hamstring muscle injuries are common amongst athletes and can result in significant time away from sport. This review article evaluates and discusses the current literature on magnetic resonance imaging (MRI) vs. musculoskeletal ultrasound (US) for prevention, diagnosis, and management of hamstring muscle injuries.

Recent Findings

MRI has commonly been used for diagnosis of hamstring injuries and can offer prognostic information regarding return to play. US offers similar clinical information with some notable advantages over MRI.

Summary

US is a valuable imaging modality that can be used for diagnosis and prognosis of hamstring injuries and also help guide return to play after injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pollock N, James SLJ, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347. https://doi.org/10.1136/bjsports-2013-093302.

    Article  PubMed  Google Scholar 

  2. Mueller-Wohlfahrt H-W, Haensel L, Mithoefer K, Ekstrand J, English B, McNally S, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342. https://doi.org/10.1136/bjsports-2012-091448.

    Article  PubMed  Google Scholar 

  3. Valle X, Alentorn-Geli E, Tol JL, Hamilton B, Garrett WE Jr, Pruna R, et al. Muscle injuries in sports: a new evidence-informed and expert consensus-based classification with clinical application. Sports Med. 2017;47(7):1241–53. https://doi.org/10.1007/s40279-016-0647-1.

    Article  PubMed  Google Scholar 

  4. Hall MM. Return to play after thigh muscle injury: utility of serial ultrasound in guiding clinical progression. Curr Sports Med Rep. 2018;17(9):296–301. https://doi.org/10.1249/jsr.0000000000000516.

    Article  PubMed  Google Scholar 

  5. Pollock N, Patel A, Chakraverty J, Suokas A, James SLJ, Chakraverty R. Time to return to full training is delayed and recurrence rate is higher in intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50(5):305. https://doi.org/10.1136/bjsports-2015-094657.

    Article  PubMed  Google Scholar 

  6. Buckthorpe M, Wright S, Bruce-Low S, Nanni G, Sturdy T, Gross AS, et al. Recommendations for hamstring injury prevention in elite football: translating research into practice. Br J Sports Med. 2019;53(7):449. https://doi.org/10.1136/bjsports-2018-099616.

    Article  PubMed  Google Scholar 

  7. Wangensteen A, Guermazi A, Tol JL, Roemer FW, Hamilton B, Alonso J-M, et al. New MRI muscle classification systems and associations with return to sport after acute hamstring injuries: a prospective study. Eur Radiol. 2018;28(8):3532–41. https://doi.org/10.1007/s00330-017-5125-0.

    Article  PubMed  Google Scholar 

  8. Greenky M, Cohen SB. Magnetic resonance imaging for assessing hamstring injuries: clinical benefits and pitfalls - a review of the current literature. Open Access J Sports Med. 2017;8:167–70. https://doi.org/10.2147/OAJSM.S113007.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Becciolini M, Bonacchi G, Bianchi S. Ultrasound features of the proximal hamstring muscle-tendon-bone unit. J Ultrasound Med. 2019;38(5):1367–82. https://doi.org/10.1002/jum.14804.

    Article  PubMed  Google Scholar 

  10. Nazarian LN. The top 10 reasons musculoskeletal sonography is an important complementary or alternative technique to MRI. AJR Am J Roentgenol. 2008;190(6):1621–6. https://doi.org/10.2214/ajr.07.3385.

    Article  PubMed  Google Scholar 

  11. O’Donoghue DO. The treatment of injuries to athletes. Philadelphia: WB Saunders; 1962.

    Google Scholar 

  12. Ryan A. Quadriceps strain, rupture and charlie horse. Med Sci Sports. 1969;1:106–11.

    Google Scholar 

  13. Takebayashi S, Takasawa H, Banzai Y, Miki H, Sasaki R, Itoh Y, et al. Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med. 1995;14(12):899–905.

    Article  CAS  Google Scholar 

  14. Chan O, Del Buono A, Best TM, Maffulli N. Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2356–62. https://doi.org/10.1007/s00167-012-2118-z.

    Article  PubMed  Google Scholar 

  15. Peetrons P. Ultrasound of muscles. Eur Radiol. 2002;12(1):35–43. https://doi.org/10.1007/s00330-001-1164-6.

    Article  CAS  PubMed  Google Scholar 

  16. Maffulli N, Del Buono A, Oliva F, Giai Via A, Frizziero A, Barazzuol M, et al. Muscle injuries: a brief guide to classification and management. Transl Med UniSa. 2015;12:14–8.

    PubMed  Google Scholar 

  17. van der Horst N, van de Hoef S, Reurink G, Huisstede B, Backx F. Return to play after hamstring injuries: a qualitative systematic review of definitions and criteria. Sports Med. 2016;46(6):899–912. https://doi.org/10.1007/s40279-015-0468-7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Visser HM, Reijman M, Heijboer MP, Bos PK. Risk factors of recurrent hamstring injuries: a systematic review. Br J Sports Med. 2012;46(2):124–30. https://doi.org/10.1136/bjsports-2011-090317.

    Article  PubMed  Google Scholar 

  19. Patel A, Chakraverty J, Pollock N, Chakraverty R, Suokas AK, James SL. British athletics muscle injury classification: a reliability study for a new grading system. Clin Radiol. 2015;70(12):1414–20. https://doi.org/10.1016/j.crad.2015.08.009.

    Article  CAS  PubMed  Google Scholar 

  20. Rubin DA. Imaging diagnosis and prognostication of hamstring injuries. AJR Am J Roentgenol. 2012;199(3):525–33. https://doi.org/10.2214/ajr.12.8784.

    Article  PubMed  Google Scholar 

  21. Freckleton G, Pizzari T. Risk factors for hamstring muscle strain injury in sport: a systematic review and meta-analysis. Br J Sports Med. 2013;47(6):351–8. https://doi.org/10.1136/bjsports-2011-090664.

    Article  PubMed  Google Scholar 

  22. van Heumen M, Tol JL, de Vos RJ, Moen MH, Weir A, Orchard J, et al. The prognostic value of MRI in determining reinjury risk following acute hamstring injury: a systematic review. Br J Sports Med. 2017;51(18):1355–63. https://doi.org/10.1136/bjsports-2016-096790.

    Article  PubMed  Google Scholar 

  23. Connell DA, Schneider-Kolsky ME, Hoving JL, Malara F, Buchbinder R, Koulouris G, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183(4):975–84. https://doi.org/10.2214/ajr.183.4.1830975.

    Article  PubMed  Google Scholar 

  24. Svensson K, Alricsson M, Eckerman M, Magounakis T, Werner S. The correlation between the imaging characteristics of hamstring injury and time required before returning to sports: a literature review. J Exerc Rehabil. 2016;12(3):134–42. https://doi.org/10.12965/jer.1632558.279.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Petersen J, Thorborg K, Nielsen MB, Skjødt T, Bolvig L, Bang N, et al. The diagnostic and prognostic value of ultrasonography in soccer players with acute hamstring injuries. Am J Sports Med. 2014;42(2):399–404. https://doi.org/10.1177/0363546513512779.

    Article  PubMed  Google Scholar 

  26. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9. https://doi.org/10.1136/bjsports-2013-092165.

    Article  PubMed  Google Scholar 

  27. Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303. https://doi.org/10.1177/0363546511419277.

    Article  PubMed  Google Scholar 

  28. Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14(5):311–7. https://doi.org/10.1046/j.1600-0838.2003.367.x.

    Article  PubMed  Google Scholar 

  29. Tyler TF, Schmitt BM, Nicholas SJ, McHugh MP. Rehabilitation after hamstring-strain injury emphasizing eccentric strengthening at long muscle lengths: results of long-term follow-up. J Sport Rehabil. 2017;26(2):131–40. https://doi.org/10.1123/jsr.2015-0099.

    Article  PubMed  Google Scholar 

  30. Chumanov ES, Schache AG, Heiderscheit BC, Thelen DG. Hamstrings are most susceptible to injury during the late swing phase of sprinting. Br J Sports Med. 2012;46(2):90. https://doi.org/10.1136/bjsports-2011-090176.

    Article  PubMed  Google Scholar 

  31. Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340. https://doi.org/10.3389/fphys.2016.00340.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brockett CL, Morgan DL, Proske U. Predicting hamstring strain injury in elite athletes. Med Sci Sports Exerc. 2004;36(3):379–87. https://doi.org/10.1249/01.mss.0000117165.75832.05.

    Article  PubMed  Google Scholar 

  33. Potier TG, Alexander CM, Seynnes OR. Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement. Eur J Appl Physiol. 2009;105(6):939–44. https://doi.org/10.1007/s00421-008-0980-7.

    Article  PubMed  Google Scholar 

  34. Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):1467–72. https://doi.org/10.1136/bjsports-2015-094881.

    Article  PubMed  Google Scholar 

  35. Timmins RG, Bourne MN, Shield AJ, Williams MD, Lorenzen C, Opar DA. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): a prospective cohort study. Br J Sports Med. 2016;50(24):1524–35. https://doi.org/10.1136/bjsports-2015-095362.

    Article  PubMed  Google Scholar 

  36. Guex K, Degache F, Morisod C, Sailly M, Millet GP. hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340. https://doi.org/10.3389/fphys.2016.00340.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Alonso-Fernandez D, Docampo-Blanco P, Martinez-Fernandez J. Changes in muscle architecture of biceps femoris induced by eccentric strength training with nordic hamstring exercise. Scand J Med Sci Sports. 2018;28(1):88–94. https://doi.org/10.1111/sms.12877.

    Article  CAS  PubMed  Google Scholar 

  38. Presland JD, Timmins RG, Bourne MN, Williams MD, Opar DA. The effect of Nordic hamstring exercise training volume on biceps femoris long head architectural adaptation. Scand J Med Sci Sports. 2018;28(7):1775–83. https://doi.org/10.1111/sms.13085.

    Article  CAS  PubMed  Google Scholar 

  39. Fyfe JJ, Opar DA, Williams MD, Shield AJ. The role of neuromuscular inhibition in hamstring strain injury recurrence. J Electromyogr Kinesiol. 2013;23(3):523–30. https://doi.org/10.1016/j.jelekin.2012.12.006.

    Article  PubMed  Google Scholar 

  40. Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Biceps femoris long head architecture: a reliability and retrospective injury study. Med Sci Sports Exerc. 2015;47(5):905–13. https://doi.org/10.1249/mss.0000000000000507.

    Article  PubMed  Google Scholar 

  41. Klimstra M, Dowling J, Durkin JL, MacDonald M. The effect of ultrasound probe orientation on muscle architecture measurement. J Electromyogr Kinesiol. 2007;17(4):504–14. https://doi.org/10.1016/j.jelekin.2006.04.011.

    Article  PubMed  Google Scholar 

  42. Noorkoiv M, Stavnsbo A, Aagaard P, Blazevich AJ. In vivo assessment of muscle fascicle length by extended field-of-view ultrasonography. J Appl Physiol (1985). 2010;109(6):1974–9. https://doi.org/10.1152/japplphysiol.00657.2010.

    Article  CAS  Google Scholar 

  43. Franchi MV, Fitze DP, Raiteri BJ, Hahn D, SpÖrri J. Ultrasound-derived biceps femoris Long head fascicle length: extrapolation pitfalls. Med Sci Sports Exerc. 2020;52(1):233–43. https://doi.org/10.1249/mss.0000000000002123.

    Article  PubMed  Google Scholar 

  44. Bennett HJ, Rider PM, Domire ZJ, DeVita P, Kulas AS. Heterogeneous fascicle behavior within the biceps femoris long head at different muscle activation levels. J Biomech. 2014;47(12):3050–5. https://doi.org/10.1016/j.jbiomech.2014.06.032.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Kruse.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Musculoskeletal Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruse, R.C., Whipple, M.T., Schmidt, E. et al. Role of Ultrasound in Managing Hamstring Muscle Injuries. Curr Phys Med Rehabil Rep 9, 237–242 (2021). https://doi.org/10.1007/s40141-021-00330-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-021-00330-7

Keywords

Navigation