Skip to main content

Advertisement

Log in

Extracorporeal Shockwave Therapy for the Treatment of Tendinopathies: Current Evidence on Effectiveness, Mechanisms, Limitations and Future Directions

  • Sports Medicine Rehabilitation (BC Liem and JA Soo Hoo, Section Editors)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review presents current understanding of mechanisms of action of extracorporeal shockwave therapy (ESWT) and provides a brief overview of its history and development. The central purpose of this review is to synthesize research findings investigating the effectiveness of ESWT for seven common tendinopathies (plantar heel pain, rotator cuff, lateral elbow, Achilles, gluteal, hamstring and patellar tendinopathy) and provide recommendations on clinical applicability.

Recent Findings

Tendinopathy is a chronic degenerative tendon disorder which is characterised by pain, swelling and impaired physical function and performance, presenting in both athletes and the general population. ESWT is an increasingly common treatment for tendinopathy, which can initiate tendon healing and regeneration. Collectively, the available evidence indicates that ESWT is effective and can be recommended in treatment for the seven tendinopathies.

Summary

Current evidence is stronger for certain tendinopathies compared to others and uncertainties remain regarding the optimal ESWT treatment parameters. The consensus from recent literature is that although ESWT can be effective in isolation it should be combined with other treatments in tendinopathy, which needs to be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sebbag E, Felten R, Sagez F, Sibilia J, Devilliers H, Arnaud L. The world-wide burden of musculoskeletal diseases: a systematic analysis of the World Health Organization Burden of Diseases Database. Ann Rheum Dis. 2019;78:844–8.

    Article  PubMed  Google Scholar 

  2. Mead MP, Gumucio JP, Awan TM, Mendias CL, Sugg KB. Pathogenesis and management of tendinopathies in sports medicine. Transl Sports Med. 2018;1:5–13.

    Article  PubMed  Google Scholar 

  3. Ackermann PW, Renstrom P. Tendinopathy in sport. Sports. Health. 2012;4:193–201.

    Google Scholar 

  4. Malliaras P, Barton CJ, Reeves ND, Langberg H. Achilles and patellar tendinopathy loading programmes : a systematic review comparing clinical outcomes and identifying potential mechanisms for effectiveness. Sports Med. 2013;43:267–86.

    Article  PubMed  Google Scholar 

  5. Magnusson SP, Langberg H, Kjaer M. The pathogenesis of tendinopathy: balancing the response to loading. Nat Rev Rheumatol. 2010;6:262–8.

    Article  PubMed  Google Scholar 

  6. Millar NL, Hueber AJ, Reilly JH, et al. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38:2085–91.

    Article  PubMed  Google Scholar 

  7. Riel H, Lindstrom CF, Rathleff MS, Jensen MB, Olesen JL. Prevalence and incidence rate of lower-extremity tendinopathies in a Danish general practice: a registry-based study. BMC Musculoskelet Disord 2019;20:239,019–2629–6.

  8. Albers IS, Zwerver J, Diercks RL, Dekker JH, Van den Akker-Scheek I. Incidence and prevalence of lower extremity tendinopathy in a Dutch general practice population: a cross sectional study. BMC Musculoskelet Disord 2016;17:16,016–0885–2.

  9. Seitz AL, McClure PW, Finucane S, Boardman ND,3rd, Michener LA. Mechanisms of rotator cuff tendinopathy: intrinsic, extrinsic, or both? Clin Biomech (Bristol, Avon) 2011;26:1–12.

  10. Sprague AL, Smith AH, Knox P, Pohlig RT, Gravare SK. Modifiable risk factors for patellar tendinopathy in athletes: a systematic review and meta-analysis. Br J Sports Med. 2018;52:1575–85.

    Article  PubMed  Google Scholar 

  11. Abate M, Schiavone C, Salini V, Andia I. Occurrence of tendon pathologies in metabolic disorders. Rheumatology (Oxford). 2013;52:599–608.

    Article  CAS  Google Scholar 

  12. Scott A, Zwerver J, Grewal N, et al. Lipids, adiposity and tendinopathy: is there a mechanistic link? Critical review Br J Sports Med. 2015;49:984–8.

    Article  PubMed  Google Scholar 

  13. Alves C, Mendes D, Marques FB. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2019;75:1431–43.

    Article  CAS  PubMed  Google Scholar 

  14. Collins M, Raleigh SM. Genetic risk factors for musculoskeletal soft tissue injuries. Med Sport Sci. 2009;54:136–49.

    Article  CAS  PubMed  Google Scholar 

  15. Plinsinga ML, Brink MS, Vicenzino B, van Wilgen CP. Evidence of nervous system sensitization in commonly presenting and persistent painful tendinopathies: a systematic review. J Orthop Sports Phys Ther. 2015;45:864–75.

    Article  PubMed  Google Scholar 

  16. Cardoso TB, Pizzari T, Kinsella R, Hope D, Cook JL. Current trends in tendinopathy management. Best Pract Res Clin Rheumatol. 2019;33:122–40.

    Article  PubMed  Google Scholar 

  17. • Mani-Babu S, Morrissey D, Waugh C, Screen H, Barton C. The effectiveness of extracorporeal shock wave therapy in lower limb tendinopathy: a systematic review. Am J Sports Med. 2015;43:752–61.. (A high-quality systematic review which summarises the evidence for shockwave therapy in common lower limb tendinopathies.)

    Article  PubMed  Google Scholar 

  18. • Korakakis V, Whiteley R, Tzavara A, Malliaropoulos N. The effectiveness of extracorporeal shockwave therapy in common lower limb conditions: a systematic review including quantification of patient-rated pain reduction. Br J Sports Med. 2018;52:387–407. (A high-quality systematic review which summarises the evidence for shockwave therapy in common lower limb conditions.)

    Article  PubMed  Google Scholar 

  19. Wang CJ. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res 2012;7:11,799X-7–11.

  20. Chaussy C, Eisenberger F, Forssmann B. Extracorporeal shockwave lithotripsy (ESWL): a chronology. J Endourol. 2007;21:1249–53.

    Article  CAS  PubMed  Google Scholar 

  21. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2:1265–8.

    Article  CAS  PubMed  Google Scholar 

  22. Chaussy C, Wilbert DM. Extracorporeal shockwave lithotripsy today–an assessment of current status. Urologe A. 1997;36:194–9.

    Article  CAS  PubMed  Google Scholar 

  23. Graff J, Diederichs W, Schulze H. Long-term followup in 1,003 extracorporeal shock wave lithotripsy patients. J Urol. 1988;140:479–83.

    Article  CAS  PubMed  Google Scholar 

  24. Ikeda K, Tomita K, Takayama K. Application of extracorporeal shock wave on bone: preliminary report. J Trauma. 1999;47:946–50.

    Article  CAS  PubMed  Google Scholar 

  25. Haupt G. Use of extracorporeal shock waves in the treatment of pseudarthrosis, tendinopathy and other orthopedic diseases. J Urol. 1997;158:4–11.

    Article  CAS  PubMed  Google Scholar 

  26. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res. 2001;387:95–101.

    Article  Google Scholar 

  27. Krischek O, Rompe JD, Herbsthofer B, Nafe B. Symptomatic low-energy shockwave therapy in heel pain and radiologically detected plantar heel spur. Z Orthop Ihre Grenzgeb. 1998;136:169–74.

    Article  CAS  PubMed  Google Scholar 

  28. Gerdesmeyer L, Wagenpfeil S, Haake M, et al. Extracorporeal shock wave therapy for the treatment of chronic calcifying tendonitis of the rotator cuff: a randomized controlled trial. JAMA. 2003;290:2573–80.

    Article  CAS  PubMed  Google Scholar 

  29. Rompe JD, Eysel P, Hopf C, et al. Extracorporeal shockwave therapy in orthopedics. Positive results in tennis elbow and tendinosis calcarea of the shoulder. Fortschr Med 1997;115:26, 29–33.

  30. Foldager CB, Kearney C, Spector M. Clinical application of extracorporeal shock wave therapy in orthopedics: focused versus unfocused shock waves. Ultrasound Med Biol. 2012;38:1673–80.

    Article  PubMed  Google Scholar 

  31. d’Agostino MC, Craig K, Tibalt E, Respizzi S. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction. Int J Surg. 2015;24:147–53.

    Article  PubMed  Google Scholar 

  32. Gerdesmeyer L, Maier M, Haake M, Schmitz C. Physical-technical principles of extracorporeal shockwave therapy (ESWT). Orthopade. 2002;31:610–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ogden JA, Toth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res. 2001;387:8–17.

    Article  Google Scholar 

  34. Cleveland RO, Chitnis PV, McClure SR. Acoustic field of a ballistic shock wave therapy device. Ultrasound Med Biol. 2007;33:1327–35.

    Article  PubMed  Google Scholar 

  35. Furia JP, Rompe JD, Cacchio A, Maffulli N. Shock wave therapy as a treatment of nonunions, avascular necrosis, and delayed healing of stress fractures. Foot Ankle Clin. 2010;15:651–62.

    Article  PubMed  Google Scholar 

  36. Csaszar NB, Angstman NB, Milz S, et al. Radial shock wave devices generate cavitation. PLoS One 2015;10:e0140541.

  37. Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19:555–64.

    Article  PubMed  Google Scholar 

  38. Holfeld J, Tepekoylu C, Reissig C, et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res. 2016;109:331–43.

    Article  CAS  PubMed  Google Scholar 

  39. Weihs AM, Fuchs C, Teuschl AH, et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem. 2014;289:27090–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ueberle F, Delius M, Guo L. Using shock waves for transfer of molecules in cells. Biomed Tech (Berl). 2002;47(Suppl 1 Pt 1):382–5.

    Article  Google Scholar 

  41. Cheng JH, Wang CJ. Biological mechanism of shockwave in bone. Int J Surg. 2015;24:143–6.

    Article  PubMed  Google Scholar 

  42. Ciampa AR, de Prati AC, Amelio E, et al. Nitric oxide mediates anti-inflammatory action of extracorporeal shock waves. FEBS Lett. 2005;579:6839–45.

    Article  CAS  PubMed  Google Scholar 

  43. Wang CJ, Wang FS, Yang KD, et al. Shock wave therapy induces neovascularization at the tendon-bone junction. A study in rabbits. J Orthop Res 2003;21:984–9.

  44. Mariotto S, de Prati AC, Cavalieri E, Amelio E, Marlinghaus E, Suzuki H. Extracorporeal shock wave therapy in inflammatory diseases: molecular mechanism that triggers anti-inflammatory action. Curr Med Chem. 2009;16:2366–72.

    Article  CAS  PubMed  Google Scholar 

  45. Chen YL, Chen KH, Yin TC, et al. Extracorporeal shock wave therapy effectively prevented diabetic neuropathy. Am J Transl Res. 2015;7:2543–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang CJ, Cheng JH, Chou WY, Hsu SL, Chen JH, Huang CY. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee. Int J Med Sci. 2017;14:213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holfeld J, Tepekoylu C, Blunder S, et al. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation. PLoS One 2014;9:e103982

  48. Waugh CM, Morrissey D, Jones E, Riley GP, Langberg H, Screen HR. In vivo biological response to extracorporeal shockwave therapy in human tendinopathy. Eur Cell Mater 2015;29:268,80; discussion 280.

  49. Davis TA, Stojadinovic A, Anam K, et al. Extracorporeal shock wave therapy suppresses the early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J. 2009;6:11–21.

    Article  PubMed  Google Scholar 

  50. Abe Y, Ito K, Hao K, et al. Extracorporeal low-energy shock-wave therapy exerts anti-inflammatory effects in a rat model of acute myocardial infarction. Circ J. 2014;78:2915–25.

    Article  CAS  PubMed  Google Scholar 

  51. Sun D, Junger WG, Yuan C, et al. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors. Stem Cells. 2013;31:1170–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sukubo NG, Tibalt E, Respizzi S, Locati M, d’Agostino MC. Effect of shock waves on macrophages: a possible role in tissue regeneration and remodeling. Int J Surg. 2015;24:124–30.

    Article  PubMed  Google Scholar 

  53. de Girolamo L, Stanco D, Galliera E, et al. Soft-focused extracorporeal shock waves increase the expression of tendon-specific markers and the release of anti-inflammatory cytokines in an adherent culture model of primary human tendon cells. Ultrasound Med Biol. 2014;40:1204–15.

    Article  PubMed  Google Scholar 

  54. Hausdorf J, Schmitz C, Averbeck B, Maier M. Molecular basis for pain mediating properties of extracorporeal shock waves. Schmerz. 2004;18:492–7.

    Article  CAS  PubMed  Google Scholar 

  55. Maier M, Averbeck B, Milz S, Refior HJ, Schmitz C. Substance P and prostaglandin E2 release after shock wave application to the rabbit femur. Clin Orthop Relat Res 2003;(406):237-45. doi:237-45.

  56. Takahashi N, Wada Y, Ohtori S, Saisu T, Moriya H. Application of shock waves to rat skin decreases calcitonin gene-related peptide immunoreactivity in dorsal root ganglion neurons. Auton Neurosci. 2003;107:81–4.

    Article  CAS  PubMed  Google Scholar 

  57. Saggini R, Di Stefano A, Saggini A, Bellomo RG. Clinical application of shock wave therapy in musculoskeletal disorders: Part i. J Biol Regul Homeost Agents. 2015;29:533–45.

    CAS  PubMed  Google Scholar 

  58. Lee JY, Ha KY, Kim JW, Seo JY, Kim YH. Does extracorporeal shock wave introduce alteration of microenvironment in cell therapy for chronic spinal cord injury? Spine (Phila Pa 1976) 2014;39:E1553–9.

  59. Lee JY, Kim SN, Lee IS, Jung H, Lee KS, Koh SE. Effects of extracorporeal shock wave therapy on spasticity in patients after brain injury: a meta-analysis. J Phys Ther Sci. 2014;26:1641–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wess OJ. A neural model for chronic pain and pain relief by extracorporeal shock wave treatment. Urol Res. 2008;36:327–34.

    Article  PubMed  Google Scholar 

  61. Lohse-Busch H, Marlinghaus E, Reime U, Mowis U. Focused low-energy extracorporeal shock waves with distally symmetric polyneuropathy (DSPNP): a pilot study. NeuroRehabilitation. 2014;35:227–33.

    CAS  Google Scholar 

  62. Kertzman P, Lenza M, Pedrinelli A, Ejnisman B. Shockwave treatment for musculoskeletal diseases and bone consolidation: qualitative analysis of the literature. Rev Bras Ortop. 2015;50:3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hu J, Liao H, Ma Z, et al. Focal adhesion kinase signaling mediated the enhancement of osteogenesis of human mesenchymal stem cells induced by extracorporeal shockwave. Sci Rep. 2016;6:20875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Berta L, Fazzari A, Ficco AM, Enrica PM, Catalano MG, Frairia R. Extracorporeal shock waves enhance normal fibroblast proliferation in vitro and activate mRNA expression for TGF-beta1 and for collagen types I and III. Acta Orthop. 2009;80:612–7.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leone L, Vetrano M, Ranieri D, et al. Extracorporeal Shock Wave Treatment (ESWT) improves in vitro functional activities of ruptured human tendon-derived tenocytes. PLoS One. 2012;7:e49759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang D, Kearney CJ, Cheriyan T, Schmid TM, Spector M. Extracorporeal shockwave-induced expression of lubricin in tendons and septa. Cell Tissue Res. 2011;346:255–62.

    Article  CAS  PubMed  Google Scholar 

  67. Kaux JF, Forthomme B, Goff CL, Crielaard JM, Croisier JL. Current opinions on tendinopathy. J Sports Sci Med. 2011;10:238–53.

    PubMed  PubMed Central  Google Scholar 

  68. Littlewood C, Bateman M, Brown K, et al. A self-managed single exercise programme versus usual physiotherapy treatment for rotator cuff tendinopathy: a randomised controlled trial (the SELF study). Clin Rehabil. 2016;30:686–96.

    Article  PubMed  Google Scholar 

  69. Monteleone G, Tramontana A, Mc Donald K, Sorge R, Tiloca A, Foti C. Ultrasonographic evaluation of the shoulder in elite Italian beach volleyball players. J Sports Med Phys Fitness. 2015;55:1193–9.

    CAS  PubMed  Google Scholar 

  70. de Witte PB, van Adrichem RA, Selten JW, Nagels J, Reijnierse M, Nelissen RG. Persistent shoulder symptoms in calcific tendinitis: clinical and radiological predictors. Ned Tijdschr Geneeskd. 2016;160:D521.

    PubMed  Google Scholar 

  71. Del Castillo-Gonzalez F, Ramos-Alvarez JJ, Rodriguez-Fabian G, Gonzalez-Perez J, Jimenez-Herranz E, Varela E. Extracorporeal shockwaves versus ultrasound-guided percutaneous lavage for the treatment of rotator cuff calcific tendinopathy: a randomized controlled trial. Eur J Phys Rehabil Med. 2016;52:145–51.

    PubMed  Google Scholar 

  72. Dejaco B, Habets B, van Loon C, van Grinsven S, van Cingel R. Eccentric versus conventional exercise therapy in patients with rotator cuff tendinopathy: a randomized, single blinded, clinical trial. Knee Surg Sports Traumatol Arthrosc. 2017;25:2051–9.

    Article  PubMed  Google Scholar 

  73. Louwerens JK, Veltman ES, van Noort A, van den Bekerom MP. The effectiveness of high-energy extracorporeal shockwave therapy versus ultrasound-guided needling versus arthroscopic surgery in the management of chronic calcific rotator cuff tendinopathy: a systematic review. Arthroscopy. 2016;32:165–75.

    Article  PubMed  Google Scholar 

  74. Engebretsen K, Grotle M, Bautz-Holter E, Ekeberg OM, Juel NG, Brox JI. Supervised exercises compared with radial extracorporeal shock-wave therapy for subacromial shoulder pain: 1-year results of a single-blind randomized controlled trial. Phys Ther. 2011;91:37–47.

    Article  PubMed  Google Scholar 

  75. Huisstede BM, Gebremariam L, van der Sande R, Hay EM, Koes BW. Evidence for effectiveness of Extracorporal Shock-Wave Therapy (ESWT) to treat calcific and non-calcific rotator cuff tendinosis–a systematic review. Man Ther. 2011;16:419–33.

    Article  PubMed  Google Scholar 

  76. Bannuru RR, Flavin NE, Vaysbrot E, Harvey W, McAlindon T. High-energy extracorporeal shock-wave therapy for treating chronic calcific tendinitis of the shoulder: a systematic review. Ann Intern Med. 2014;160:542–9.

    Article  PubMed  Google Scholar 

  77. Verstraelen FU, In den Kleef NJ, Jansen L, Morrenhof JW. High-energy versus low-energy extracorporeal shock wave therapy for calcifying tendinitis of the shoulder: which is superior? A meta-analysis. Clin Orthop Relat Res 2014;472:2816–25.

  78. Wu YC, Tsai WC, Tu YK, Yu TY. Comparative effectiveness of nonoperative treatments for chronic calcific tendinitis of the shoulder: a systematic review and network meta-analysis of randomized controlled trials. Arch Phys Med Rehabil. 2017;98(1678):1692.e6.

    Google Scholar 

  79. Ioppolo F, Tattoli M, Di Sante L, et al. Clinical improvement and resorption of calcifications in calcific tendinitis of the shoulder after shock wave therapy at 6 months’ follow-up: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2013;94:1699–706.

    Article  PubMed  Google Scholar 

  80. Louwerens JK, Sierevelt IN, van Noort A, van den Bekerom MP. Evidence for minimally invasive therapies in the management of chronic calcific tendinopathy of the rotator cuff: a systematic review and meta-analysis. J Shoulder Elbow Surg. 2014;23:1240–9.

    Article  PubMed  Google Scholar 

  81. • Testa G, Vescio A, Perez S, et al. Extracorporeal shockwave therapy treatment in upper limb diseases: a systematic review. J Clin Med 2020;9:https://doi.org/10.3390/jcm9020453. (A high-quality systematic review which summarises the evidence for shockwave therapy in common upper limb tendinopathies.)

  82. Peters J, Luboldt W, Schwarz W, Jacobi V, Herzog C, Vogl TJ. Extracorporeal shock wave therapy in calcific tendinitis of the shoulder. Skeletal Radiol. 2004;33:712–8.

    Article  PubMed  Google Scholar 

  83. Cacchio A, Paoloni M, Barile A, et al. Effectiveness of radial shock-wave therapy for calcific tendinitis of the shoulder: single-blind, randomized clinical study. Phys Ther. 2006;86:672–82.

    Article  PubMed  Google Scholar 

  84. Albert JD, Meadeb J, Guggenbuhl P, et al. High-energy extracorporeal shock-wave therapy for calcifying tendinitis of the rotator cuff: a randomised trial. J Bone Joint Surg Br. 2007;89:335–41.

    Article  PubMed  Google Scholar 

  85. Speed C. A systematic review of shockwave therapies in soft tissue conditions: focusing on the evidence. Br J Sports Med. 2014;48:1538–42.

    Article  PubMed  Google Scholar 

  86. Kolk A, Yang KG, Tamminga R, van der Hoeven H. Radial extracorporeal shock-wave therapy in patients with chronic rotator cuff tendinitis: a prospective randomised double-blind placebo-controlled multicentre trial. Bone Joint J 2013;95-B:1521–6.

  87. Schofer MD, Hinrichs F, Peterlein CD, Arendt M, Schmitt J. High- versus low-energy extracorporeal shock wave therapy of rotator cuff tendinopathy: a prospective, randomised, controlled study. Acta Orthop Belg. 2009;75:452–8.

    PubMed  Google Scholar 

  88. Galasso O, Amelio E, Riccelli DA, Gasparini G. Short-term outcomes of extracorporeal shock wave therapy for the treatment of chronic non-calcific tendinopathy of the supraspinatus: a double-blind, randomized, placebo-controlled trial. BMC Musculoskelet Disord 2012;13:86,2474–13–86.

  89. Bhabra G, Wang A, Ebert JR, Edwards P, Zheng M, Zheng MH. Lateral elbow tendinopathy: development of a pathophysiology-based treatment algorithm. Orthop J Sports Med. 2016;4:2325967116670635.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Thiele S, Thiele R, Gerdesmeyer L. Lateral epicondylitis: this is still a main indication for extracorporeal shockwave therapy. Int J Surg. 2015;24:165–70.

    Article  CAS  PubMed  Google Scholar 

  91. De Smedt T, de Jong A, Van Leemput W, Lieven D, Van Glabbeek F. Lateral epicondylitis in tennis: update on aetiology, biomechanics and treatment. Br J Sports Med. 2007;41:816–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shiri R, Viikari-Juntura E, Varonen H, Heliovaara M. Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol. 2006;164:1065–74.

    Article  PubMed  Google Scholar 

  93. Pieber K, Angelmaier L, Csapo R, Herceg M. Acute injuries and overuse syndromes in sport climbing and bouldering in Austria: a descriptive epidemiological study. Wien Klin Wochenschr. 2012;124:357–62.

    Article  PubMed  Google Scholar 

  94. Cullinane FL, Boocock MG, Trevelyan FC. Is eccentric exercise an effective treatment for lateral epicondylitis? A systematic review Clin Rehabil. 2014;28:3–19.

    Article  Google Scholar 

  95. Dimitrios S. Lateral elbow tendinopathy: evidence of physiotherapy management. World J Orthop. 2016;7:463–6.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Furia JP. Safety and efficacy of extracorporeal shock wave therapy for chronic lateral epicondylitis. Am J Orthop (Belle Mead NJ) 2005;34:13,9; discussion 19.

  97. Trentini R, Mangano T, Repetto I, et al. Short- to mid-term follow-up effectiveness of US-guided focal extracorporeal shock wave therapy in the treatment of elbow lateral epicondylitis. Musculoskelet Surg. 2015;99(Suppl 1):S91–7.

    Article  PubMed  Google Scholar 

  98. Notarnicola A, Quagliarella L, Sasanelli N, et al. Effects of extracorporeal shock wave therapy on functional and strength recovery of handgrip in patients affected by epicondylitis. Ultrasound Med Biol. 2014;40:2830–40.

    Article  PubMed  Google Scholar 

  99. Radwan YA, ElSobhi G, Badawy WS, Reda A, Khalid S. Resistant tennis elbow: shock-wave therapy versus percutaneous tenotomy. Int Orthop. 2008;32:671–7.

    Article  PubMed  Google Scholar 

  100. Gunduz R, Malas FU, Borman P, Kocaoglu S, Ozcakar L. Physical therapy, corticosteroid injection, and extracorporeal shock wave treatment in lateral epicondylitis. Clinical and ultrasonographical comparison Clin Rheumatol. 2012;31:807–12.

    Article  PubMed  Google Scholar 

  101. Buchbinder R, Green SE, Youd JM, Assendelft WJ, Barnsley L, Smidt N. Systematic review of the efficacy and safety of shock wave therapy for lateral elbow pain. J Rheumatol. 2006;33:1351–63.

    PubMed  Google Scholar 

  102. Rompe JD, Maffulli N. Repetitive shock wave therapy for lateral elbow tendinopathy (tennis elbow): a systematic and qualitative analysis. Br Med Bull. 2007;83:355–78.

    Article  PubMed  Google Scholar 

  103. Rompe JD, Decking J, Schoellner C, Theis C. Repetitive low-energy shock wave treatment for chronic lateral epicondylitis in tennis players. Am J Sports Med. 2004;32:734–43.

    Article  PubMed  Google Scholar 

  104. Pettrone FA, McCall BR. Extracorporeal shock wave therapy without local anesthesia for chronic lateral epicondylitis. J Bone Joint Surg Am. 2005;87:1297–304.

    PubMed  Google Scholar 

  105. Chung B, Wiley JP. Effectiveness of extracorporeal shock wave therapy in the treatment of previously untreated lateral epicondylitis: a randomized controlled trial. Am J Sports Med. 2004;32:1660–7.

    Article  PubMed  Google Scholar 

  106. Haake M, Konig IR, Decker T, et al. Extracorporeal shock wave therapy in the treatment of lateral epicondylitis : a randomized multicenter trial. J Bone Joint Surg Am 2002;84-A:1982–91.

  107. Speed CA, Nichols D, Richards C, et al. Extracorporeal shock wave therapy for lateral epicondylitis–a double blind randomised controlled trial. J Orthop Res. 2002;20:895–8.

    Article  CAS  PubMed  Google Scholar 

  108. Rompe JD, Hopf C, Kullmer K, Heine J, Burger R, Nafe B. Low-energy extracorporal shock wave therapy for persistent tennis elbow. Int Orthop. 1996;20:23–7.

    Article  CAS  PubMed  Google Scholar 

  109. Spacca G, Necozione S, Cacchio A. Radial shock wave therapy for lateral epicondylitis: a prospective randomised controlled single-blind study. Eura Medicophys. 2005;41:17–25.

    CAS  PubMed  Google Scholar 

  110. Melegati G, Tornese D, Bandi M, Rubini M. Comparison of two ultrasonographic localization techniques for the treatment of lateral epicondylitis with extracorporeal shock wave therapy: a randomized study. Clin Rehabil. 2004;18:366–70.

    Article  PubMed  Google Scholar 

  111. Melikyan EY, Shahin E, Miles J, Bainbridge LC. Extracorporeal shock-wave treatment for tennis elbow A randomised double-blind study. J Bone Joint Surg Br. 2003;85:852–5.

    Article  CAS  PubMed  Google Scholar 

  112. Crowther MA, Bannister GC, Huma H, Rooker GD. A prospective, randomised study to compare extracorporeal shock-wave therapy and injection of steroid for the treatment of tennis elbow. J Bone Joint Surg Br. 2002;84:678–9.

    Article  CAS  PubMed  Google Scholar 

  113. Yao G, Chen J, Duan Y, Chen X. Efficacy of extracorporeal shock wave therapy for lateral epicondylitis: a systematic review and meta-analysis. Biomed Res Int. 2020;2020:2064781.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yoon SY, Kim YW, Shin IS, Moon HI, Lee SC. Does the type of extracorporeal shock therapy influence treatment effectiveness in lateral epicondylitis? Syst Rev Meta-analysis. Clin Orthop Relat Res 2020

  115. Yan C, Xiong Y, Chen L, et al. A comparative study of the efficacy of ultrasonics and extracorporeal shock wave in the treatment of tennis elbow: a meta-analysis of randomized controlled trials. J Orthop Surg Res 2019;14:248,019–1290-y.

  116. Xiong Y, Xue H, Zhou W, et al. Shock-wave therapy versus corticosteroid injection on lateral epicondylitis: a meta-analysis of randomized controlled trials. Phys Sportsmed. 2019;47:284–9.

    Article  PubMed  Google Scholar 

  117. Leal C, Ramon S, Furia J, Fernandez A, Romero L, Hernandez-Sierra L. Current concepts of shockwave therapy in chronic patellar tendinopathy. Int J Surg. 2015;24:160–4.

    Article  PubMed  Google Scholar 

  118. van der Worp H, van Ark M, Roerink S, Pepping GJ, van den Akker-Scheek I, Zwerver J. Risk factors for patellar tendinopathy: a systematic review of the literature. Br J Sports Med. 2011;45:446–52.

    Article  PubMed  Google Scholar 

  119. Schwartz A, Watson JN, Hutchinson MR. Patellar Tendinopathy. Sports. Health. 2015;7:415–20.

    Google Scholar 

  120. Wang CJ, Ko JY, Chan YS, Weng LH, Hsu SL. Extracorporeal shockwave for chronic patellar tendinopathy. Am J Sports Med. 2007;35:972–8.

    Article  PubMed  Google Scholar 

  121. Taunton J, Taunton K, Khan K. Treatment of patellar tendinopathy with extracorporeal shock wave therapy. British Columbia Med J 2003;45.

  122. Vulpiani MC, Vetrano M, Savoia V, Di Pangrazio E, Trischitta D, Ferretti A. Jumper’s knee treatment with extracorporeal shock wave therapy: a long-term follow-up observational study. J Sports Med Phys Fitness. 2007;47:323–8.

    CAS  PubMed  Google Scholar 

  123. Zwerver J, Verhagen E, Hartgens F, van den Akker-Scheek I, Diercks RL. The TOPGAME-study: effectiveness of extracorporeal shockwave therapy in jumping athletes with patellar tendinopathy. Design of a randomised controlled trial. BMC Musculoskelet Disord 2010;11:28,2474–11–28.

  124. Zwerver J, Hartgens F, Verhagen E, van der Worp H, van den Akker-Scheek I, Diercks RL. No effect of extracorporeal shockwave therapy on patellar tendinopathy in jumping athletes during the competitive season: a randomized clinical trial. Am J Sports Med. 2011;39:1191–9.

    Article  PubMed  Google Scholar 

  125. Furia JP, Rompe JD, Cacchio A, Del Buono A, Maffulli N. A single application of low-energy radial extracorporeal shock wave therapy is effective for the management of chronic patellar tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2013;21:346–50.

    Article  PubMed  Google Scholar 

  126. Peers KH, Lysens RJ, Brys P, Bellemans J. Cross-sectional outcome analysis of athletes with chronic patellar tendinopathy treated surgically and by extracorporeal shock wave therapy. Clin J Sport Med. 2003;13:79–83.

    Article  PubMed  Google Scholar 

  127. Vetrano M, Castorina A, Vulpiani MC, Baldini R, Pavan A, Ferretti A. Platelet-rich plasma versus focused shock waves in the treatment of jumper’s knee in athletes. Am J Sports Med. 2013;41:795–803.

    Article  PubMed  Google Scholar 

  128. van der Worp H, Zwerver J, Hamstra M, van den Akker-Scheek I, Diercks RL. No difference in effectiveness between focused and radial shockwave therapy for treating patellar tendinopathy: a randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2014;22:2026–32.

    Article  PubMed  Google Scholar 

  129. Thijs KM, Zwerver J, Backx FJ, et al. Effectiveness of shockwave treatment combined with eccentric training for patellar tendinopathy: a double-blinded randomized study. Clin J Sport Med. 2017;27:89–96.

    Article  PubMed  Google Scholar 

  130. van der Worp H, van den Akker-Scheek I, van Schie H, Zwerver J. ESWT for tendinopathy: technology and clinical implications. Knee Surg Sports Traumatol Arthrosc. 2013;21:1451–8.

    Article  PubMed  Google Scholar 

  131. Moya D, Ramon S, Schaden W, Wang CJ, Guiloff L, Cheng JH. The role of extracorporeal shockwave treatment in musculoskeletal disorders. J Bone Joint Surg Am. 2018;100:251–63.

    Article  PubMed  Google Scholar 

  132. Andriolo L, Altamura SA, Reale D, Candrian C, Zaffagnini S, Filardo G. Nonsurgical treatments of patellar tendinopathy: multiple injections of platelet-rich plasma are a suitable option: a systematic review and meta-analysis. Am J Sports Med. 2019;47:1001–18.

    Article  PubMed  Google Scholar 

  133. Chen PC, Wu KT, Chou WY, et al. Comparative effectiveness of different nonsurgical treatments for patellar tendinopathy: a systematic review and network meta-analysis. Arthroscopy. 2019;35(3117):3131.e2.

    Google Scholar 

  134. Magnan B, Bondi M, Pierantoni S, Samaila E. The pathogenesis of Achilles tendinopathy: a systematic review. Foot Ankle Surg. 2014;20:154–9.

    Article  PubMed  Google Scholar 

  135. Kraemer R, Wuerfel W, Lorenzen J, Busche M, Vogt PM, Knobloch K. Analysis of hereditary and medical risk factors in Achilles tendinopathy and Achilles tendon ruptures: a matched pair analysis. Arch Orthop Trauma Surg. 2012;132:847–53.

    Article  PubMed  Google Scholar 

  136. Silbernagel KG, Gustavsson A, Thomee R, Karlsson J. Evaluation of lower leg function in patients with Achilles tendinopathy. Knee Surg Sports Traumatol Arthrosc. 2006;14:1207–17.

    Article  PubMed  Google Scholar 

  137. Silbernagel KG, Brorsson A, Lundberg M. The majority of patients with Achilles tendinopathy recover fully when treated with exercise alone: a 5-year follow-up. Am J Sports Med. 2011;39:607–13.

    Article  PubMed  Google Scholar 

  138. Buda R, Di Caprio F, Bedetti L, Mosca M, Giannini S. Foot overuse diseases in rock climbing: an epidemiologic study. J Am Podiatr Med Assoc. 2013;103:113–20.

    Article  PubMed  Google Scholar 

  139. Tenforde AS, Sayres LC, McCurdy ML, Collado H, Sainani KL, Fredericson M. Overuse injuries in high school runners: lifetime prevalence and prevention strategies. PM R 2011;3:125,31; quiz 131.

  140. Ames PR, Longo UG, Denaro V, Maffulli N. Achilles tendon problems: not just an orthopaedic issue. Disabil Rehabil. 2008;30:1646–50.

    Article  PubMed  Google Scholar 

  141. Murphy MC, Travers MJ, Chivers P, et al. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: a systematic review and meta-analysis. Br J Sports Med. 2019;53:1070–7.

    Article  PubMed  Google Scholar 

  142. Rompe JD, Furia J, Maffulli N. Eccentric loading compared with shock wave treatment for chronic insertional achilles tendinopathy. A randomized, controlled trial. J Bone Joint Surg Am 2008;90:52–61.

  143. Gerdesmeyer L, Mittermayr R, Fuerst M, et al. Current evidence of extracorporeal shock wave therapy in chronic Achilles tendinopathy. Int J Surg. 2015;24:154–9.

    Article  PubMed  Google Scholar 

  144. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for chronic noninsertional Achilles tendinopathy. Am J Sports Med. 2008;36:502–8.

    Article  PubMed  Google Scholar 

  145. Lakshmanan P, O’Doherty D. Chronic achilles tendinopathy: treatment with extracorporeal shock waves. Foot and ankle surgery : official journal of the European Society of Foot and Ankle Surgeons. 2004;10:125–30.

    Article  Google Scholar 

  146. Rompe JD, Nafe B, Furia JP, Maffulli N. Eccentric loading, shock-wave treatment, or a wait-and-see policy for tendinopathy of the main body of tendo Achillis: a randomized controlled trial. Am J Sports Med. 2007;35:374–83.

    Article  PubMed  Google Scholar 

  147. Rompe JD, Furia J, Maffulli N. Eccentric loading versus eccentric loading plus shock-wave treatment for midportion achilles tendinopathy: a randomized controlled trial. Am J Sports Med. 2009;37:463–70.

    Article  PubMed  Google Scholar 

  148. Furia JP. High-energy extracorporeal shock wave therapy as a treatment for insertional Achilles tendinopathy. Am J Sports Med. 2006;34:733–40.

    Article  PubMed  Google Scholar 

  149. Costa ML, Shepstone L, Donell ST, Thomas TL. Shock wave therapy for chronic Achilles tendon pain: a randomized placebo-controlled trial. Clin Orthop Relat Res. 2005;440:199–204.

    Article  CAS  PubMed  Google Scholar 

  150. Rasmussen S, Christensen M, Mathiesen I, Simonson O. Shockwave therapy for chronic Achilles tendinopathy: a double-blind, randomized clinical trial of efficacy. Acta Orthop. 2008;79:249–56.

    Article  PubMed  Google Scholar 

  151. Fridman R, Cain JD, Weil L Jr, Weil LS. Extracorporeal shockwave therapy for the treatment of Achilles tendinopathies: a prospective study. J Am Podiatr Med Assoc. 2008;98:466–8.

    Article  PubMed  Google Scholar 

  152. Vulpiani MC, Trischitta D, Trovato P, Vetrano M, Ferretti A. Extracorporeal shockwave therapy (ESWT) in Achilles tendinopathy. A long-term follow-up observational study. J Sports Med Phys Fitness 2009;49:171–6.

  153. Saxena A, Ramdath S Jr, O’Halloran P, Gerdesmeyer L, Gollwitzer H. Extra-corporeal pulsed-activated therapy (“EPAT” sound wave) for Achilles tendinopathy: a prospective study. J Foot Ankle Surg. 2011;50:315–9.

    Article  PubMed  Google Scholar 

  154. Al-Abbad H, Simon JV. The effectiveness of extracorporeal shock wave therapy on chronic achilles tendinopathy: a systematic review. Foot Ankle Int. 2013;34:33–41.

    Article  PubMed  Google Scholar 

  155. Wiegerinck JI, Kerkhoffs GM, van Sterkenburg MN, Sierevelt IN, van Dijk CN. Treatment for insertional Achilles tendinopathy: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2013;21:1345–55.

    Article  CAS  PubMed  Google Scholar 

  156. Magnussen RA, Dunn WR, Thomson AB. Nonoperative treatment of midportion Achilles tendinopathy: a systematic review. Clin J Sport Med. 2009;19:54–64.

    Article  PubMed  Google Scholar 

  157. Rathleff MS, Thorborg K. “Load me up, Scotty”: mechanotherapy for plantar fasciopathy (formerly known as plantar fasciitis). Br J Sports Med. 2015;49:638–9.

    Article  CAS  PubMed  Google Scholar 

  158. Monteagudo M, de Albornoz PM, Gutierrez B, Tabuenca J, Alvarez I. Plantar fasciopathy: a current concepts review. EFORT Open Rev. 2018;3:485–93.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Hansen L, Krogh TP, Ellingsen T, Bolvig L, Fredberg U. Long-term prognosis of plantar fasciitis: a 5- to 15-year follow-up study of 174 patients with ultrasound examination. Orthop J Sports Med. 2018;6:2325967118757983.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Trojian T, Tucker AK. Plantar Fasciitis. Am Fam Physician. 2019;99:744–50.

    PubMed  Google Scholar 

  161. Lopes AD, Hespanhol Junior LC, Yeung SS, Costa LO. What are the main running-related musculoskeletal injuries? Systematic Rev Sports Med. 2012;42:891–905.

    Article  Google Scholar 

  162. Johannsen FE, Herzog RB, Malmgaard-Clausen NM, Hoegberget-Kalisz M, Magnusson SP, Kjaer M. Corticosteroid injection is the best treatment in plantar fasciitis if combined with controlled training. Knee Surg Sports Traumatol Arthrosc. 2019;27:5–12.

    Article  PubMed  Google Scholar 

  163. Riel H, Jensen MB, Olesen JL, Vicenzino B, Rathleff MS. Self-dosed and pre-determined progressive heavy-slow resistance training have similar effects in people with plantar fasciopathy: a randomised trial. J Physiother. 2019;65:144–51.

    Article  PubMed  Google Scholar 

  164. Almubarak A, Foster N. Exercise Therapy for Plantar Heel Pain: A Syst Rev. Int J Exercise Sci 2012;5.

  165. Rompe JD, Furia J, Weil L, Maffulli N. Shock wave therapy for chronic plantar fasciopathy. Br Med Bull. 2007;81–82:183–208.

    Article  PubMed  Google Scholar 

  166. Gerdesmeyer L, Frey C, Vester J, et al. Radial extracorporeal shock wave therapy is safe and effective in the treatment of chronic recalcitrant plantar fasciitis: results of a confirmatory randomized placebo-controlled multicenter study. Am J Sports Med. 2008;36:2100–9.

    Article  PubMed  Google Scholar 

  167. Chang KV, Chen SY, Chen WS, Tu YK, Chien KL. Comparative effectiveness of focused shock wave therapy of different intensity levels and radial shock wave therapy for treating plantar fasciitis: a systematic review and network meta-analysis. Arch Phys Med Rehabil. 2012;93:1259–68.

    Article  PubMed  Google Scholar 

  168. Aqil A, Siddiqui MR, Solan M, Redfern DJ, Gulati V, Cobb JP. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: a meta-analysis of RCTs. Clin Orthop Relat Res. 2013;471:3645–52.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Zhiyun L, Tao J, Zengwu S. Meta-analysis of high-energy extracorporeal shock wave therapy in recalcitrant plantar fasciitis. Swiss Med Wkly 2013;143:w13825.

  170. Dizon JN, Gonzalez-Suarez C, Zamora MT, Gambito ED. Effectiveness of extracorporeal shock wave therapy in chronic plantar fasciitis: a meta-analysis. Am J Phys Med Rehabil. 2013;92:606–20.

    Article  PubMed  Google Scholar 

  171. Yin MC, Ye J, Yao M, et al. Is extracorporeal shock wave therapy clinical efficacy for relief of chronic, recalcitrant plantar fasciitis? A systematic review and meta-analysis of randomized placebo or active-treatment controlled trials. Arch Phys Med Rehabil. 2014;95:1585–93.

    Article  PubMed  Google Scholar 

  172. Lou J, Wang S, Liu S, Xing G. Effectiveness of extracorporeal shock wave therapy without local anesthesia in patients with recalcitrant plantar fasciitis: a meta-analysis of randomized controlled trials. Am J Phys Med Rehabil. 2017;96:529–34.

    Article  PubMed  Google Scholar 

  173. Sun J, Gao F, Wang Y, Sun W, Jiang B, Li Z. Extracorporeal shock wave therapy is effective in treating chronic plantar fasciitis: a meta-analysis of RCTs. Medicine (Baltimore) 2017;96:e6621.

  174. • Babatunde OO, Legha A, Littlewood C, et al. Comparative effectiveness of treatment options for plantar heel pain: a systematic review with network meta-analysis. Br J Sports Med. 2019;53:182–94.. (A high-quality systematic review with network meta-analysis which summarises the evidence for all treatments including shockwave therapy for plantar heel pain.)

    Article  PubMed  Google Scholar 

  175. Li X, Zhang L, Gu S, et al. Comparative effectiveness of extracorporeal shock wave, ultrasound, low-level laser therapy, noninvasive interactive neurostimulation, and pulsed radiofrequency treatment for treating plantar fasciitis: a systematic review and network meta-analysis. Medicine (Baltimore) 2018;97:e12819.

  176. Li H, Lv H, Lin T. Comparison of efficacy of eight treatments for plantar fasciitis: a network meta-analysis. J Cell Physiol. 2018;234:860–70.

    Article  PubMed  Google Scholar 

  177. Li H, Xiong Y, Zhou W, et al. Shock-wave therapy improved outcome with plantar fasciitis: a meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2019;139:1763–70.

    Article  PubMed  Google Scholar 

  178. Hsiao MY, Hung CY, Chang KV, Chien KL, Tu YK, Wang TG. Comparative effectiveness of autologous blood-derived products, shock-wave therapy and corticosteroids for treatment of plantar fasciitis: a network meta-analysis. Rheumatology (Oxford). 2015;54:1735–43.

    Article  CAS  Google Scholar 

  179. Li S, Wang K, Sun H, et al. Clinical effects of extracorporeal shock-wave therapy and ultrasound-guided local corticosteroid injections for plantar fasciitis in adults: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 2018;97:e13687-.

  180. Sun K, Zhou H, Jiang W. Extracorporeal shock wave therapy versus other therapeutic methods for chronic plantar fasciitis. Foot Ankle Surg. 2020;26:33–8.

    Article  PubMed  Google Scholar 

  181. Grimaldi A, Fearon A. Gluteal tendinopathy: integrating pathomechanics and clinical features in its management. J Orthop Sports Phys Ther. 2015;45:910–22.

    Article  PubMed  Google Scholar 

  182. Lequesne M, Mathieu P, Vuillemin-Bodaghi V, Bard H, Djian P. Gluteal tendinopathy in refractory greater trochanter pain syndrome: diagnostic value of two clinical tests. Arthritis Rheum. 2008;59:241–6.

    Article  CAS  PubMed  Google Scholar 

  183. Grimaldi A, Mellor R, Hodges P, Bennell K, Wajswelner H, Vicenzino B. Gluteal tendinopathy: a review of mechanisms, assessment and management. Sports Med. 2015;45:1107–19.

    Article  PubMed  Google Scholar 

  184. Allison K, Salomoni SE, Bennell KL, et al. Hip abductor muscle activity during walking in individuals with gluteal tendinopathy. Scand J Med Sci Sports. 2018;28:686–95.

    Article  CAS  PubMed  Google Scholar 

  185. Plinsinga ML, Coombes BK, Mellor R, et al. Psychological factors not strength deficits are associated with severity of gluteal tendinopathy: a cross-sectional study. Eur J Pain 2018;.

  186. Mellor R, Grimaldi A, Wajswelner H, et al. Exercise and load modification versus corticosteroid injection versus ‘wait and see’ for persistent gluteus medius/minimus tendinopathy (the LEAP trial): a protocol for a randomised clinical trial. BMC Musculoskelet Disord 2016;17:196,016–1043–6.

  187. Del Buono A, Papalia R, Khanduja V, Denaro V, Maffulli N. Management of the greater trochanteric pain syndrome: a systematic review. Br Med Bull. 2012;102:115–31.

    Article  PubMed  Google Scholar 

  188. Furia JP, Rompe JD, Maffulli N. Low-energy extracorporeal shock wave therapy as a treatment for greater trochanteric pain syndrome. Am J Sports Med. 2009;37:1806–13.

    Article  PubMed  Google Scholar 

  189. Rompe JD, Segal NA, Cacchio A, Furia JP, Morral A, Maffulli N. Home training, local corticosteroid injection, or radial shock wave therapy for greater trochanter pain syndrome. Am J Sports Med. 2009;37:1981–90.

    Article  PubMed  Google Scholar 

  190. Carlisi E, Cecini M, Di Natali G, Manzoni F, Tinelli C, Lisi C. Focused extracorporeal shock wave therapy for greater trochanteric pain syndrome with gluteal tendinopathy: a randomized controlled trial. Clin Rehabil. 2019;33:670–80.

    Article  PubMed  Google Scholar 

  191. Lempainen L, Johansson K, Banke IJ, et al. Expert opinion: diagnosis and treatment of proximal hamstring tendinopathy. Muscles Ligaments Tendons J. 2015;5:23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lempainen L, Sarimo J, Mattila K, Vaittinen S, Orava S. Proximal hamstring tendinopathy: results of surgical management and histopathologic findings. Am J Sports Med. 2009;37:727–34.

    Article  PubMed  Google Scholar 

  193. Goom TS, Malliaras P, Reiman MP, Purdam CR. Proximal hamstring tendinopathy: clinical aspects of assessment and management. J Orthop Sports Phys Ther. 2016;46:483–93.

    Article  PubMed  Google Scholar 

  194. Benazzo F, Marullo M, Zanon G, Indino C, Pelillo F. Surgical management of chronic proximal hamstring tendinopathy in athletes: a 2 to 11 years of follow-up. J Orthop Traumatol. 2013;14:83–9.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Cook JL, Purdam C. Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 2012;46:163–8.

    Article  CAS  PubMed  Google Scholar 

  196. Cacchio A, Rompe JD, Furia JP, Susi P, Santilli V, De Paulis F. Shockwave therapy for the treatment of chronic proximal hamstring tendinopathy in professional athletes. Am J Sports Med. 2011;39:146–53.

    Article  PubMed  Google Scholar 

  197. Reilly JM, Bluman E, Tenforde AS. Narrative review on the effect of shockwave treatment for management of upper and lower extremity musculoskeletal conditions. PM R 2018;.

  198. Scheuer R, Friedrich M, Hahne J, et al. Approaches to optimize focused extracorporeal shockwave therapy (ESWT) based on an observational study of 363 feet with recalcitrant plantar fasciitis. Int J Surg. 2016;27:1–7.

    Article  CAS  PubMed  Google Scholar 

  199. Malliaropoulos N, Thompson D, Meke M, et al. Individualised radial extracorporeal shock wave therapy (rESWT) for symptomatic calcific shoulder tendinopathy: a retrospective clinical study. BMC Musculoskelet Disord 2017;18:513,017–1873-x.

  200. Lohrer H, Nauck T, Korakakis V, Malliaropoulos N. Historical ESWT paradigms are overcome: a narrative review. Biomed Res Int. 2016;2016:3850461.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Gaida JE, Cook J. Treatment options for patellar tendinopathy: critical review. Curr Sports Med Rep. 2011;10:255–70.

    Article  PubMed  Google Scholar 

  202. Cinar E, Saxena S, Uygur F. Combination therapy versus exercise and orthotic support in the management of pain in plantar fasciitis: a randomized controlled trial. Foot Ankle Int 2018;:1071100717747590.

  203. https://www.shockwavetherapy.org/fileadmin/user_upload/ISMST_Guidelines.pdf (Accessed July 14, 2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

IB conceptualised the work, wrote the first draft of the manuscript, revised the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Ian Burton.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Medicine Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, I. Extracorporeal Shockwave Therapy for the Treatment of Tendinopathies: Current Evidence on Effectiveness, Mechanisms, Limitations and Future Directions. Curr Phys Med Rehabil Rep 9, 163–176 (2021). https://doi.org/10.1007/s40141-021-00324-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-021-00324-5

Keywords

Navigation