Skip to main content
Log in

Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury

  • Rehabilitation Technology (R Harvey, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss the potential use of transcranial direct current stimulation (tDCS) to improve motor behavior after brain injury.

Recent Findings

Despite evidence that tDCS can improve motor function following brain injury, meta-analysis studies have largely failed to find conclusive support for tDCS as a viable treatment. In part, these inconsistencies arise from widespread variability in individuals’ responsiveness to tDCS because of biological and experimental factors.

Summary

Properly designed smart clinical studies are still needed to determine the optimal stimulation parameters and combinations of tDCS. However, some patterns of “best practice” have begun to emerge: (1) pairing tDCS concurrently with high-intensity motor training as opposed to before, after, or in the absence of physical practice, (2) repeating sessions of stimulation in close succession over a single administration, (3) administering stimulation during more acute periods of recovery over chronic states, and (4) utilizing modeling techniques based on individual anatomy to tailor electrode placement and optimize current flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liebetanz D, Nitsche MA, Tergau F, Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain J Neurol. 2002;125(Pt 10):2238–47. https://doi.org/10.1093/brain/awf238.

    Article  Google Scholar 

  2. Nitsche MA, Nitsche MS, Klein CC, Tergau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2003;114(4):600–4. https://doi.org/10.1016/s1388-2457(02)00412-1.

    Article  Google Scholar 

  3. Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex N Y N 1991. 2004;14(11):1240–5. https://doi.org/10.1093/cercor/bhh085.

    Article  Google Scholar 

  4. Nitsche MA, Jaussi W, Liebetanz D, Lang N, Tergau F, Paulus W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29(8):1573–8. https://doi.org/10.1038/sj.npp.1300517.

    Article  CAS  Google Scholar 

  5. • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(Pt 3):633–9. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00633One of the first experiments to demonstrate that tDCS can modulate corticomotor excitability in humans.

  6. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–901. https://doi.org/10.1212/wnl.57.10.1899.

    Article  PubMed  CAS  Google Scholar 

  7. • Purpura DP, Shofer RJ, Housepian EM, Noback CR. Comparative ontogenesis of structure-function relations in cerebral and cerebellar cortex. In: Purpura DP, Schadé JP, editors. Progress in brain research. Vol 4. Growth and maturation of the brain: Elsevier; 1964. p. 187–221. https://doi.org/10.1016/S0079-6123(08)61277-7. Demonstrated that DCS can affect spontaneous neural activity.

  8. Bindman LJ, Lippold OCJ, Redfearn JWT. Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents. Nature. 1962;196(4854):584–5. https://doi.org/10.1038/196584a0.

    Article  PubMed  CAS  Google Scholar 

  9. Bindman LJ, Lippold OC, Redfearn JW. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 1964;172:369–82. https://doi.org/10.1113/jphysiol.1964.sp007425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Creutzfeldt OD, Fromm GH, Kapp H. Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol. 1962;5(6):436–52. https://doi.org/10.1016/0014-4886(62)90056-0.

    Article  PubMed  CAS  Google Scholar 

  11. •• Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204. https://doi.org/10.1016/j.neuron.2010.03.035Demonstrated that DCS affects neuronal evoked potentials and is dependent on expression of BDNF to induce plasticity changes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Márquez-Ruiz J, Leal-Campanario R, Sánchez-Campusano R, et al. Transcranial direct-current stimulation modulates synaptic mechanisms involved in associative learning in behaving rabbits. Proc Natl Acad Sci. 2012;109(17):6710–5. https://doi.org/10.1073/pnas.1121147109.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cambiaghi M, Velikova S, Gonzalez-Rosa JJ, Cursi M, Comi G, Leocani L. Brain transcranial direct current stimulation modulates motor excitability in mice. Eur J Neurosci. 2010;31(4):704–9. https://doi.org/10.1111/j.1460-9568.2010.07092.x.

    Article  PubMed  Google Scholar 

  14. • Monai H, Ohkura M, Tanka M, et al. Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/?term=Calcium+imaging+reveals+glial+involvement+in+transcranial+direct+current+stimulation-induced+plasticity+in+mouse+brain. Accessed Dec 5, 2019.-Demonstrates that other non-neuronal cell types such as astrocytes are affected by DCS.

  15. Islam N, Moriwaki A, Hattori Y, Hori Y. Anodal polarization induces protein kinase C gamma (PKC gamma)-like immunoreactivity in the rat cerebral cortex. Neurosci Res. 1994;21(2):169–72. https://doi.org/10.1016/0168-0102(94)90159-7.

    Article  PubMed  CAS  Google Scholar 

  16. Islam N, Aftabuddin M, Moriwaki A, Hattori Y, Hori Y. Increase in the calcium level following anodal polarization in the rat brain. Brain Res. 1995;684(2):206–8. https://doi.org/10.1016/0006-8993(95)00434-r.

    Article  PubMed  CAS  Google Scholar 

  17. Moriwaki A, Hattori Y, Hayashi Y, Lu YF, Islam N, Hori Y. Repeated application of anodal direct current produces regional dominance in histamine-elicited cyclic AMP accumulation in rabbit cerebral cortex. Acta Med Okayama. 1994;48(6):323–6. https://doi.org/10.18926/AMO/31097.

    Article  PubMed  CAS  Google Scholar 

  18. Rohan JG, Carhuatanta KA, McInturf SM, Miklasevich MK, Jankord R. Modulating hippocampal plasticity with in vivo brain stimulation. J Neurosci. 2015;35(37):12824–32. https://doi.org/10.1523/JNEUROSCI.2376-15.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Podda MV, Cocco S, Mastrodonato A, et al. Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of BDNF expression. Sci Rep. 2016;6:22180. https://doi.org/10.1038/srep22180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ranieri F, Podda MV, Riccardi E, et al. Modulation of LTP at rat hippocampal CA3-CA1 synapses by direct current stimulation. J Neurophysiol. 2012;107(7):1868–80. https://doi.org/10.1152/jn.00319.2011.

    Article  PubMed  CAS  Google Scholar 

  21. Alexander JK, Fuss B, Colello RJ. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2006;2(2):93–103. https://doi.org/10.1017/S1740925X0600010X.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Gellner A-K, Reis J, Holtick C, Schubert C, Fritsch B. Direct current stimulation-induced synaptic plasticity in the sensorimotor cortex: structure follows function. Brain Stimulat. 2020;13(1):80–8. https://doi.org/10.1016/j.brs.2019.07.026DCS elicits morphological changes such as affecting spine density.

    Article  Google Scholar 

  23. Li Q, Brus-Ramer M, Martin JH, McDonald JW. Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett. 2010;479(2):128–33. https://doi.org/10.1016/j.neulet.2010.05.043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. •• Rahman A, Reato D, Arlotti M, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(Pt 10):2563–78. https://doi.org/10.1113/jphysiol.2012.247171Direction of electrical current flow influences different cell types and different compartments within a cell.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nitsche MA, Seeber A, Frommann K, et al. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J Physiol. 2005;568(1):291–303. https://doi.org/10.1113/jphysiol.2005.092429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Cantarero G, Tang B, O’Malley R, Salas R, Celnik P. Motor learning interference is proportional to occlusion of LTP-like plasticity. J Neurosci. 2013;33(11):4634–41. https://doi.org/10.1523/JNEUROSCI.4706-12.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Cantarero G, Lloyd A, Celnik P. Reversal of long-term potentiation-like plasticity processes after motor learning disrupts skill retention. J Neurosci. 2013;33(31):12862–9. https://doi.org/10.1523/JNEUROSCI.1399-13.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ammann C, Lindquist MA, Celnik PA. Response variability of different anodal transcranial direct current stimulation intensities across multiple sessions. Brain Stimulat. 2017;10(4):757–63. https://doi.org/10.1016/j.brs.2017.04.003.

    Article  Google Scholar 

  29. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22. https://doi.org/10.1523/JNEUROSCI.2184-09.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Boonstra TW, Nikolin S, Meisener A-C, Martin DM, Loo CK. Change in mean frequency of resting-state electroencephalography after transcranial direct current stimulation. Front Hum Neurosci. 2016;10:270. https://doi.org/10.3389/fnhum.2016.00270.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W. Transcranial direct current stimulation over the primary motor cortex during fMRI. NeuroImage. 2011;55(2):590–6. https://doi.org/10.1016/j.neuroimage.2010.11.085.

    Article  PubMed  Google Scholar 

  32. Venkatakrishnan A, Sandrini M. Combining transcranial direct current stimulation and neuroimaging: novel insights in understanding neuroplasticity. J Neurophysiol. 2012;107(1):1–4. https://doi.org/10.1152/jn.00557.2011.

    Article  PubMed  Google Scholar 

  33. Sehm B, Kipping J, Schäfer A, Villringer A, Ragert P. A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Front Hum Neurosci. 2013;7. https://doi.org/10.3389/fnhum.2013.00183.

  34. Stagg CJ, Best JG, Stephenson MC, et al. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 2009;29(16):5202–6. https://doi.org/10.1523/JNEUROSCI.4432-08.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Stagg CJ, Wylezinska M, Matthews PM, et al. Neurochemical effects of theta burst stimulation as assessed by magnetic resonance spectroscopy. J Neurophysiol. 2009;101(6):2872–7. https://doi.org/10.1152/jn.91060.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Medeiros LF, de Souza ICC, Vidor LP, et al. Neurobiological effects of transcranial direct current stimulation: a review. Front Psychiatry. 2012;3. https://doi.org/10.3389/fpsyt.2012.00110.

  37. Rosso C, Lamy J-C. Does resting motor threshold predict motor hand recovery after stroke? Front Neurol. 2018;9. https://doi.org/10.3389/fneur.2018.01020.

  38. Cakar E, Akyuz G, Durmus O, et al. The relationships of motor-evoked potentials to hand dexterity, motor function, and spasticity in chronic stroke patients: a transcranial magnetic stimulation study. Acta Neurol Belg. 2016;116(4):481–7. https://doi.org/10.1007/s13760-016-0633-2.

    Article  PubMed  Google Scholar 

  39. • Murase N, Duque J, Mazzocchio R, Cohen LG. Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol. 2004;55(3):400–9. https://doi.org/10.1002/ana.10848Demonstrated presence of interhemispheric imbalances after stroke that correlate with upper limb impairment.

    Article  PubMed  Google Scholar 

  40. Duque J, Hummel F, Celnik P, Murase N, Mazzocchio R, Cohen LG. Transcallosal inhibition in chronic subcortical stroke. NeuroImage. 2005;28(4):940–6. https://doi.org/10.1016/j.neuroimage.2005.06.033.

    Article  PubMed  Google Scholar 

  41. Duque J, Murase N, Celnik P, et al. Intermanual differences in movement-related interhemispheric inhibition. J Cogn Neurosci. 2007;19(2):204–13. https://doi.org/10.1162/jocn.2007.19.2.204.

    Article  PubMed  Google Scholar 

  42. Bestmann S, Swayne O, Blankenburg F, et al. The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI. J Neurosci. 2010;30(36):11926–37. https://doi.org/10.1523/JNEUROSCI.5642-09.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ward NS, Brown MM, Thompson AJ, Frackowiak RSJ. Neural correlates of outcome after stroke: a cross-sectional fMRI study. Brain J Neurol. 2003;126(Pt 6):1430–48. https://doi.org/10.1093/brain/awg145.

    Article  CAS  Google Scholar 

  44. Ward NS, Newton JM, Swayne OBC, et al. Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain J Neurol. 2006;129(Pt 3):809–19. https://doi.org/10.1093/brain/awl002.

    Article  Google Scholar 

  45. Koch G, Oliveri M, Cheeran B, et al. Hyperexcitability of parietal-motor functional connections for the intact left-hemisphere in neglect patients. Brain J Neurol. 2008;131(Pt 12):3147–55. https://doi.org/10.1093/brain/awn273.

    Article  Google Scholar 

  46. • Stinear CM, Petoe MA, Byblow WD. Primary motor cortex excitability during recovery after stroke: implications for neuromodulation. Brain Stimulat. 2015;8(6):1183–90. https://doi.org/10.1016/j.brs.2015.06.015Corticomotor excitability and limb function improve with stroke recovery.

    Article  Google Scholar 

  47. Shimizu T, Hosaki A, Hino T, et al. Motor cortical disinhibition in the unaffected hemisphere after unilateral cortical stroke. Brain J Neurol. 2002;125(Pt 8):1896–907. https://doi.org/10.1093/brain/awf183.

    Article  Google Scholar 

  48. Cicinelli P, Traversa R, Rossini PM. Post-stroke reorganization of brain motor output to the hand: a 2-4 month follow-up with focal magnetic transcranial stimulation. Electroencephalogr Clin Neurophysiol. 1997;105(6):438–50. https://doi.org/10.1016/s0924-980x(97)00052-0.

    Article  PubMed  CAS  Google Scholar 

  49. Bütefisch CM, Wessling M, Netz J, Seitz RJ, Hömberg V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabil Neural Repair. 2008;22(1):4–21. https://doi.org/10.1177/1545968307301769.

    Article  PubMed  Google Scholar 

  50. Xu J, Branscheidt M, Schambra H, et al. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol. 2019;85(4):502–13. https://doi.org/10.1002/ana.25452.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chistyakov AV, Soustiel JF, Hafner H, Elron M, Feinsod M. Altered excitability of the motor cortex after minor head injury revealed by transcranial magnetic stimulation. Acta Neurochir. 1998;140(5):467–72. https://doi.org/10.1007/s007010050126.

    Article  PubMed  CAS  Google Scholar 

  52. Chistyakov AV, Hafner H, Soustiel JF, Trubnik M, Levy G, Feinsod M. Dissociation of somatosensory and motor evoked potentials in non-comatose patients after head injury. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 1999;110(6):1080–9. https://doi.org/10.1016/s1388-2457(99)00029-2.

    Article  CAS  Google Scholar 

  53. • Bernabeu M, Demirtas-Tatlidede A, Opisso E, Lopez R, Tormos JM, Pascual-Leone A. Abnormal corticospinal excitability in traumatic diffuse axonal brain injury. J Neurotrauma. 2009;26(12):2185–93. https://doi.org/10.1089/neu.2008.0859Reduced MEP amplitude in paretic limb is related to severity of DAI and motor impairment.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Crossley M, Shiel A, Wilson B, et al. Monitoring emergence from coma following severe brain injury in an octogenarian using behavioural indicators, electrophysiological measures and metabolic studies: a demonstration of the potential for good recovery in older adults. Brain Inj. 2005;19(9):729–37. https://doi.org/10.1080/02699050400013733.

    Article  PubMed  CAS  Google Scholar 

  55. Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12. https://doi.org/10.1016/s0016-5085(98)70081-2.

    Article  PubMed  CAS  Google Scholar 

  56. • Martin SJ, Grimwood PD, Morris RG. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000;23:649–711. https://doi.org/10.1146/annurev.neuro.23.1.649Review article on the role of synaptic plasticity in M1 and motor learning.

    Article  PubMed  CAS  Google Scholar 

  57. Rioult-Pedotti M-S, Friedman D, Hess G, Donoghue JP. Strengthening of horizontal cortical connections following skill learning. Nat Neurosci. 1998;1(3):230–4. https://doi.org/10.1038/678.

    Article  PubMed  CAS  Google Scholar 

  58. Monfils M-H, Teskey GC. Skilled-learning-induced potentiation in rat sensorimotor cortex: a transient form of behavioural long-term potentiation. Neuroscience. 2004;125(2):329–36. https://doi.org/10.1016/j.neuroscience.2004.01.048.

    Article  PubMed  CAS  Google Scholar 

  59. Hodgson RA, Ji Z, Standish S, Boyd-Hodgson TE, Henderson AK, Racine RJ. Training-induced and electrically induced potentiation in the neocortex. Neurobiol Learn Mem. 2005;83(1):22–32. https://doi.org/10.1016/j.nlm.2004.07.001.

    Article  PubMed  CAS  Google Scholar 

  60. Liepert J, Miltner WH, Bauder H, et al. Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neurosci Lett. 1998;250(1):5–8. https://doi.org/10.1016/s0304-3940(98)00386-3.

    Article  PubMed  CAS  Google Scholar 

  61. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. Role of the human motor cortex in rapid motor learning. Exp Brain Res. 2001;136(4):431–8. https://doi.org/10.1007/s002210000614.

    Article  PubMed  CAS  Google Scholar 

  62. Perez MA, Lungholt BKS, Nyborg K, Nielsen JB. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004;159(2):197–205. https://doi.org/10.1007/s00221-004-1947-5.

    Article  PubMed  Google Scholar 

  63. Rosenkranz K, Kacar A, Rothwell JC. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. J Neurosci. 2007;27(44):12058–66. https://doi.org/10.1523/JNEUROSCI.2663-07.2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ziemann U, Ilić TV, Iliać TV, Pauli C, Meintzschel F, Ruge D. Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci. 2004;24(7):1666–72. https://doi.org/10.1523/JNEUROSCI.5016-03.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science. 1994;263(5151):1287–9. https://doi.org/10.1126/science.8122113.

    Article  PubMed  CAS  Google Scholar 

  66. Scholz J, Klein MC, Behrens TEJ, Johansen-Berg H. Training induces changes in white matter architecture. Nat Neurosci. 2009;12(11):1370–1. https://doi.org/10.1038/nn.2412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Landi SM, Baguear F, Della-Maggiore V. One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J Neurosci. 2011;31(33):11808–13. https://doi.org/10.1523/JNEUROSCI.2253-11.2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. • Reis J, Schambra HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci. 2009;106(5):1590–5. https://doi.org/10.1073/pnas.0805413106Demonstrated that performance on a skill task in healthy individuals improved with anodal tDCS applied over M1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vines BW, Cerruti C, Schlaug G. Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 2008;9:103. https://doi.org/10.1186/1471-2202-9-103.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tecchio F, Zappasodi F, Assenza G, et al. Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol. 2010;104(2):1134–40. https://doi.org/10.1152/jn.00661.2009.

    Article  PubMed  Google Scholar 

  71. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Hummel FC. Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke. 2012;43(8):2185–91. https://doi.org/10.1161/STROKEAHA.111.645382.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Herzfeld DJ, Vaswani PA, Marko MK, Shadmehr R. A memory of errors in sensorimotor learning. Science. 2014;345(6202):1349–53. https://doi.org/10.1126/science.1253138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hunter T, Sacco P, Nitsche MA, Turner DL. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol. 2009;587(Pt 12):2949–61. https://doi.org/10.1113/jphysiol.2009.169284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7. https://doi.org/10.1152/jn.00645.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kaminski E, Hoff M, Rjosk V, et al. Anodal transcranial direct current stimulation does not facilitate dynamic balance task learning in healthy old adults. Front Hum Neurosci. 2017;11. https://doi.org/10.3389/fnhum.2017.00016.

  76. • Boggio PS, Castro LO, Savagim EA, et al. Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci Lett. 2006;404(1–2):232–6. https://doi.org/10.1016/j.neulet.2006.05.051Demonstrated that performance on JTT improved with anodal tDCS over M1.

    Article  PubMed  CAS  Google Scholar 

  77. Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair. 2005;19(1):14–9. https://doi.org/10.1177/1545968304272698.

    Article  PubMed  Google Scholar 

  78. Hummel F, Celnik P, Giraux P, et al. Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain J Neurol. 2005;128(Pt 3):490–9. https://doi.org/10.1093/brain/awh369.

    Article  Google Scholar 

  79. Fregni F, Boggio PS, Mansur CG, et al. Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport. 2005;16(14):1551–5. https://doi.org/10.1097/01.wnr.0000177010.44602.5e.

    Article  PubMed  Google Scholar 

  80. Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 2006;5(8):708–12. https://doi.org/10.1016/S1474-4422(06)70525-7.

    Article  PubMed  Google Scholar 

  81. Lefebvre S, Thonnard J-L, Laloux P, Peeters A, Jamart J, Vandermeeren Y. Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabil Neural Repair. 2014;28(2):100–10. https://doi.org/10.1177/1545968313478485.

    Article  PubMed  Google Scholar 

  82. Khedr EM, Shawky OA, El-Hammady DH, et al. Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehabil Neural Repair. 2013;27(7):592–601. https://doi.org/10.1177/1545968313484808.

    Article  PubMed  Google Scholar 

  83. Boggio PS, Nunes A, Rigonatti SP, Nitsche MA, Pascual-Leone A, Fregni F. Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor Neurol Neurosci. 2007;25(2):123–9.

    PubMed  Google Scholar 

  84. Rocha S, Silva E, Foerster Á, et al. The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disabil Rehabil. 2016;38(7):653–60. https://doi.org/10.3109/09638288.2015.1055382.

    Article  PubMed  Google Scholar 

  85. Allman C, Amadi U, Winkler AM, et al. Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Sci Transl Med. 2016;8(330):330re1. https://doi.org/10.1126/scitranslmed.aad5651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Mortensen J, Figlewski K, Andersen H. Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disabil Rehabil. 2016;38(7):637–43. https://doi.org/10.3109/09638288.2015.1055379.

    Article  PubMed  Google Scholar 

  87. Bornheim S, Croisier J-L, Maquet P, Kaux J-F. Proposal of a new transcranial direct current stimulation safety screening tool. Am J Phys Med Rehabil. 2019;98(7):e77–8. https://doi.org/10.1097/PHM.0000000000001096.

    Article  PubMed  Google Scholar 

  88. Ochi M, Saeki S, Oda T, Matsushima Y, Hachisuka K. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. J Rehabil Med. 2013;45(2):137–40. https://doi.org/10.2340/16501977-1099.

    Article  PubMed  Google Scholar 

  89. Ilić NV, Dubljanin-Raspopović E, Nedeljković U, et al. Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restor Neurol Neurosci. 2016;34(6):935–45. https://doi.org/10.3233/RNN-160668.

    Article  PubMed  Google Scholar 

  90. Kim D-Y, Lim J-Y, Kang EK, et al. Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. Am J Phys Med Rehabil. 2010;89(11):879–86. https://doi.org/10.1097/PHM.0b013e3181f70aa7.

    Article  PubMed  Google Scholar 

  91. Nair DG, Renga V, Lindenberg R, Zhu L, Schlaug G. Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restor Neurol Neurosci. 2011;29(6):411–20. https://doi.org/10.3233/RNN-2011-0612.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lee SJ, Chun MH. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch Phys Med Rehabil. 2014;95(3):431–8. https://doi.org/10.1016/j.apmr.2013.10.027.

    Article  PubMed  Google Scholar 

  93. Rabadi MH, Aston CE. Effect of transcranial direct current stimulation on severely affected arm-hand motor function in patients after an acute ischemic stroke: a pilot randomized control trial. Am J Phys Med Rehabil. 2017;96(10 Suppl 1):S178–84. https://doi.org/10.1097/PHM.0000000000000823.

    Article  PubMed  Google Scholar 

  94. Zheng C-J, Liao W-J, Xia W-G. Effect of combined low-frequency repetitive transcranial magnetic stimulation and virtual reality training on upper limb function in subacute stroke: a double-blind randomized controlled trial. J Huazhong Univ Sci Technol Med Sci Hua Zhong Ke Ji Xue Xue Bao Yi Xue Ying Wen Ban Huazhong Keji Daxue Xuebao Yixue Yingdewen Ban. 2015;35(2):248–54. https://doi.org/10.1007/s11596-015-1419-0.

    Article  Google Scholar 

  95. Takebayashi T, Takahashi K, Moriwaki M, Sakamoto T, Domen K. Improvement of upper extremity deficit after constraint-induced movement therapy combined with and without preconditioning stimulation using dual-hemisphere transcranial direct current stimulation and peripheral neuromuscular stimulation in chronic stroke patients: a pilot randomized controlled trial. Front Neurol. 2017;8:568. https://doi.org/10.3389/fneur.2017.00568.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lindenberg R, Renga V, Zhu LL, Nair D, Schlaug G. Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology. 2010;75(24):2176–84. https://doi.org/10.1212/WNL.0b013e318202013a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Alisar DC, Ozen S, Sozay S. Effects of bihemispheric transcranial direct current stimulation on upper extremity function in stroke patients: a randomized double-blind sham-controlled study. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2019;104454. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104454.

  98. •• Bolognini N, Vallar G, Casati C, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair. 2011;25(9):819–29. https://doi.org/10.1177/1545968311411056After chronic stroke, anodal tDCS over M1 paired with upper limb training improved motor performance and reduced transcallosal inhibition from the intact hemisphere.

    Article  PubMed  Google Scholar 

  99. Cunningham DA, Varnerin N, Machado A, et al. Stimulation targeting higher motor areas in stroke rehabilitation: a proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms. Restor Neurol Neurosci. 2015;33(6):911–26. https://doi.org/10.3233/RNN-150574.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Andrade SM, Batista LM, Nogueira LLRF, et al. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehabil Res Pract. 2017;2017:6842549. https://doi.org/10.1155/2017/6842549.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Plow EB, Cunningham DA, Beall E, et al. Effectiveness and neural mechanisms associated with tDCS delivered to premotor cortex in stroke rehabilitation: study protocol for a randomized controlled trial. Trials. 2013;14:331. https://doi.org/10.1186/1745-6215-14-331.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Middleton A, Fritz SL, Liuzzo DM, Newman-Norlund R, Herter TM. Using clinical and robotic assessment tools to examine the feasibility of pairing tDCS with upper extremity physical therapy in patients with stroke and TBI: a consideration-of-concept pilot study. NeuroRehabilitation. 2014;35(4):741–54. https://doi.org/10.3233/NRE-141178.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Di Lazzaro V, Capone F, Di Pino G, et al. Combining robotic training and non-invasive brain stimulation in severe upper limb-impaired chronic stroke patients. Front Neurosci. 2016;10. https://doi.org/10.3389/fnins.2016.00088.

  104. Rossi C, Sallustio F, Di Legge S, Stanzione P, Koch G. Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients. Eur J Neurol. 2013;20(1):202–4. https://doi.org/10.1111/j.1468-1331.2012.03703.x.

    Article  PubMed  CAS  Google Scholar 

  105. Fusco A, Assenza F, Iosa M, et al. The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. Biomed Res Int. 2014;2014:547290. https://doi.org/10.1155/2014/547290.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W, Kirker SGB. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor Neurol Neurosci. 2007;25(1):9–15.

    PubMed  CAS  Google Scholar 

  107. Mazzoleni S, Tran V-D, Dario P, Posteraro F. Effects of transcranial direct current stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Trans Neural Syst Rehabil Eng Publ IEEE Eng Med Biol Soc. 2019;27(7):1458–66. https://doi.org/10.1109/TNSRE.2019.2920576.

    Article  Google Scholar 

  108. Triccas LT, Burridge JH, Hughes A, Verheyden G, Desikan M, Rothwell J. A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation. 2015;37(2):181–91. https://doi.org/10.3233/NRE-151251.

    Article  PubMed  Google Scholar 

  109. Bradnam LV, Stinear CM, Barber PA, Byblow WD. Contralesional hemisphere control of the proximal paretic upper limb following stroke. Cereb Cortex N Y N 1991. 2012;22(11):2662–71. https://doi.org/10.1093/cercor/bhr344.

    Article  Google Scholar 

  110. Elsner B, Kwakkel G, Kugler J, Mehrholz J. Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials. J NeuroEng Rehabil. 2017;14(1):95. https://doi.org/10.1186/s12984-017-0301-7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tedesco Triccas L, Burridge JH, Hughes AM, et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: a review and meta-analysis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2016;127(1):946–55. https://doi.org/10.1016/j.clinph.2015.04.067.

    Article  CAS  Google Scholar 

  112. Chhatbar PY, Ramakrishnan V, Kautz S, George MS, Adams RJ, Feng W. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship. Brain Stimulat. 2016;9(1):16–26. https://doi.org/10.1016/j.brs.2015.09.002.

    Article  Google Scholar 

  113. Madhavan S, Shah B. Enhancing motor skill learning with transcranial direct current stimulation – a concise review with applications to stroke. Front Psychiatry. 2012;3. https://doi.org/10.3389/fpsyt.2012.00066.

  114. Klomjai W, Aneksan B, Pheungphrarattanatrai A, et al. Effect of single-session dual-tDCS before physical therapy on lower-limb performance in sub-acute stroke patients: a randomized sham-controlled crossover study. Ann Phys Rehabil Med. 2018;61(5):286–91. https://doi.org/10.1016/j.rehab.2018.04.005.

    Article  PubMed  Google Scholar 

  115. Tanaka S, Takeda K, Otaka Y, et al. Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabil Neural Repair. 2011;25(6):565–9. https://doi.org/10.1177/1545968311402091.

    Article  PubMed  Google Scholar 

  116. Sohn MK, Jee SJ, Kim YW. Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med. 2013;37(6):759–65. https://doi.org/10.5535/arm.2013.37.6.759.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tahtis V, Kaski D, Seemungal BM. The effect of single session bi-cephalic transcranial direct current stimulation on gait performance in sub-acute stroke: a pilot study. Restor Neurol Neurosci. 2014;32(4):527–32. https://doi.org/10.3233/RNN-140393.

    Article  PubMed  Google Scholar 

  118. Jayaram G, Stinear JW. The effects of transcranial stimulation on paretic lower limb motor excitability during walking. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc. 2009;26(4):272–9. https://doi.org/10.1097/WNP.0b013e3181af1d41.

    Article  Google Scholar 

  119. Manji A, Amimoto K, Matsuda T, Wada Y, Inaba A, Ko S. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke. Neurosci Lett. 2018;662:302–5. https://doi.org/10.1016/j.neulet.2017.10.049.

    Article  PubMed  CAS  Google Scholar 

  120. • Chang MC, Kim DY, Park DH. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulat. 2015;8(3):561–6. https://doi.org/10.1016/j.brs.2015.01.411After chronic stroke, anodal tDCS paired with physical therapy improved lower limb function and increased corticomotor excitability of the affected hemisphere.

    Article  Google Scholar 

  121. Seo JS, Yang HS, Jung S, Kang CS, Jang S, Kim DH. Effect of reducing assistance during robot-assisted gait training on step length asymmetry in patients with hemiplegic stroke: a randomized controlled pilot trial. Medicine (Baltimore). 2018;97(33):e11792. https://doi.org/10.1097/MD.0000000000011792.

    Article  Google Scholar 

  122. Danzl MM, Chelette KC, Lee K, Lykins D, Sawaki L. Brain stimulation paired with novel locomotor training with robotic gait orthosis in chronic stroke: a feasibility study. NeuroRehabilitation. 2013;33(1):67–76. https://doi.org/10.3233/NRE-130929.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Coppens MJM, Staring WHA, Nonnekes J, Geurts ACH, Weerdesteyn V. Offline effects of transcranial direct current stimulation on reaction times of lower extremity movements in people after stroke: a pilot cross-over study. J Neuroeng Rehabil. 2019;16(1):136. https://doi.org/10.1186/s12984-019-0604-y.

    Article  PubMed  PubMed Central  Google Scholar 

  124. van Asseldonk EHF, Boonstra TA. Transcranial direct current stimulation of the leg motor cortex enhances coordinated motor output during walking with a large inter-individual variability. Brain Stimulat. 2016;9(2):182–90. https://doi.org/10.1016/j.brs.2015.10.001.

    Article  Google Scholar 

  125. Kindred JH, Kautz SA, Wonsetler EC, Bowden MG. Single sessions of high-definition transcranial direct current stimulation do not alter lower extremity biomechanical or corticomotor response variables post-stroke. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.00286.

  126. Cattagni T, Geiger M, Supiot A, Zory R, Pradon D, Roche N. A single session of bihemispheric transcranial direct current stimulation does not improve quadriceps muscle spasticity in people with chronic stroke. Brain Stimulat. 2019;12(5):1309–11. https://doi.org/10.1016/j.brs.2019.06.027.

    Article  Google Scholar 

  127. Geroin C, Picelli A, Munari D, Waldner A, Tomelleri C, Smania N. Combined transcranial direct current stimulation and robot-assisted gait training in patients with chronic stroke: a preliminary comparison. Clin Rehabil. 2011;25(6):537–48. https://doi.org/10.1177/0269215510389497.

    Article  PubMed  Google Scholar 

  128. Vaz PG, Salazar APDS, Stein C, et al. Noninvasive brain stimulation combined with other therapies improves gait speed after stroke: a systematic review and meta-analysis. Top Stroke Rehabil. 2019;26(3):201–13. https://doi.org/10.1080/10749357.2019.1565696.

    Article  PubMed  Google Scholar 

  129. Ko M-H, Han S-H, Park S-H, Seo J-H, Kim Y-H. Improvement of visual scanning after DC brain polarization of parietal cortex in stroke patients with spatial neglect. Neurosci Lett. 2008;448(2):171–4. https://doi.org/10.1016/j.neulet.2008.10.050.

    Article  PubMed  CAS  Google Scholar 

  130. Sparing R, Thimm M, Hesse MD, Küst J, Karbe H, Fink GR. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain J Neurol. 2009;132(Pt 11):3011–20. https://doi.org/10.1093/brain/awp154.

    Article  CAS  Google Scholar 

  131. Sunwoo H, Kim Y-H, Chang WH, Noh S, Kim E-J, Ko M-H. Effects of dual transcranial direct current stimulation on post-stroke unilateral visuospatial neglect. Neurosci Lett. 2013;554:94–8. https://doi.org/10.1016/j.neulet.2013.08.064.

    Article  PubMed  CAS  Google Scholar 

  132. Yi YG, Chun MH, Do KH, Sung EJ, Kwon YG, Kim DY. The effect of transcranial direct current stimulation on neglect syndrome in stroke patients. Ann Rehabil Med. 2016;40(2):223–9. https://doi.org/10.5535/arm.2016.40.2.223.

    Article  PubMed  PubMed Central  Google Scholar 

  133. • Bang D-H, Bong S-Y. Effect of combination of transcranial direct current stimulation and feedback training on visuospatial neglect in patients with subacute stroke: a pilot randomized controlled trial. J Phys Ther Sci. 2015;27(9):2759–61. https://doi.org/10.1589/jpts.27.2759In hemineglect patients, anodal tDCS over parietal cortex during training improved symptoms of neglect.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Smit M, Schutter DJLG, Nijboer TCW, et al. Transcranial direct current stimulation to the parietal cortex in hemispatial neglect: a feasibility study. Neuropsychologia. 2015;74:152–61. https://doi.org/10.1016/j.neuropsychologia.2015.04.014.

    Article  PubMed  Google Scholar 

  135. Mylius V, Jung M, Menzler K, et al. Effects of transcranial direct current stimulation on pain perception and working memory. Eur J Pain Lond Engl. 2012;16(7):974–82. https://doi.org/10.1002/j.1532-2149.2011.00105.x.

    Article  CAS  Google Scholar 

  136. Salazar APS, Vaz PG, Marchese RR, Stein C, Pinto C, Pagnussat AS. Noninvasive brain stimulation improves hemispatial neglect after stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil. 2018;99(2):355–366.e1. https://doi.org/10.1016/j.apmr.2017.07.009.

    Article  PubMed  Google Scholar 

  137. Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2(11):1217–24. https://doi.org/10.1038/nm1196-1217.

    Article  PubMed  CAS  Google Scholar 

  138. Mistry S, Verin E, Singh S, et al. Unilateral suppression of pharyngeal motor cortex to repetitive transcranial magnetic stimulation reveals functional asymmetry in the hemispheric projections to human swallowing. J Physiol. 2007;585(Pt 2):525–38. https://doi.org/10.1113/jphysiol.2007.144592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Kumar S, Wagner CW, Frayne C, et al. Noninvasive brain stimulation may improve stroke-related dysphagia: a pilot study. Stroke. 2011;42(4):1035–40. https://doi.org/10.1161/STROKEAHA.110.602128.

    Article  PubMed  PubMed Central  Google Scholar 

  140. • Shigematsu T, Fujishima I, Ohno K. Transcranial direct current stimulation improves swallowing function in stroke patients. Neurorehabil Neural Repair. 2013;27(4):363–9. https://doi.org/10.1177/1545968312474116After chronic stroke, anodal tDCS over M1 paired with motor training improved swallowing.

    Article  PubMed  Google Scholar 

  141. Ahn YH, Sohn H-J, Park J-S, et al. Effect of bihemispheric anodal transcranial direct current stimulation for dysphagia in chronic stroke patients: a randomized clinical trial. J Rehabil Med. 2017;49(1):30–5. https://doi.org/10.2340/16501977-2170.

    Article  PubMed  Google Scholar 

  142. Yang EJ, Baek S-R, Shin J, et al. Effects of transcranial direct current stimulation (tDCS) on post-stroke dysphagia. Restor Neurol Neurosci. 2012;30(4):303–11. https://doi.org/10.3233/RNN-2012-110213.

    Article  PubMed  CAS  Google Scholar 

  143. Pisegna JM, Kaneoka A, Pearson WG, Kumar S, Langmore SE. Effects of non-invasive brain stimulation on post-stroke dysphagia: a systematic review and meta-analysis of randomized controlled trials. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2016;127(1):956–68. https://doi.org/10.1016/j.clinph.2015.04.069.

    Article  Google Scholar 

  144. Yang SN, Pyun S-B, Kim HJ, Ahn HS, Rhyu BJ. Effectiveness of non-invasive brain stimulation in dysphagia subsequent to stroke: a systemic review and meta-analysis. Dysphagia. 2015;30(4):383–91. https://doi.org/10.1007/s00455-015-9619-0.

    Article  PubMed  Google Scholar 

  145. •• Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87. https://doi.org/10.1038/s41593-017-0054-4Review over variability in individuals’ responsiveness to tDCS because of biological and experimental factors.

    Article  PubMed  CAS  Google Scholar 

  146. Fujiyama H, Hyde J, Hinder MR, et al. Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci. 2014;6:115. https://doi.org/10.3389/fnagi.2014.00115.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kuo M-F, Paulus W, Nitsche MA. Sex differences in cortical neuroplasticity in humans. Neuroreport. 2006;17(16):1703–7. https://doi.org/10.1097/01.wnr.0000239955.68319.c2.

    Article  PubMed  Google Scholar 

  148. Bikson M, Rahman A, Datta A. Computational models of transcranial direct current stimulation. Clin EEG Neurosci. 2012;43(3):176–83. https://doi.org/10.1177/1550059412445138.

    Article  PubMed  Google Scholar 

  149. Datta A, Truong D, Minhas P, Parra LC, Bikson M. Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front Psychiatry. 2012;3. https://doi.org/10.3389/fpsyt.2012.00091.

  150. Kleim JA, Chan S, Pringle E, et al. BDNF val66met polymorphism is associated with modified experience-dependent plasticity in human motor cortex. Nat Neurosci. 2006;9(6):735–7. https://doi.org/10.1038/nn1699.

    Article  PubMed  CAS  Google Scholar 

  151. Cheeran BJ, Ritter C, Rothwell JC, Siebner HR. Mapping genetic influences on the corticospinal motor system in humans. Neuroscience. 2009;164(1):156–63. https://doi.org/10.1016/j.neuroscience.2009.01.054.

    Article  PubMed  CAS  Google Scholar 

  152. Sale MV, Ridding MC, Nordstrom MA. Cortisol inhibits neuroplasticity induction in human motor cortex. J Neurosci. 2008;28(33):8285–93. https://doi.org/10.1523/JNEUROSCI.1963-08.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Sale MV, Ridding MC, Nordstrom MA. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res. 2007;181(4):615–26. https://doi.org/10.1007/s00221-007-0960-x.

    Article  PubMed  Google Scholar 

  154. Nishida K, Koshikawa Y, Morishima Y, et al. Pre-stimulus brain activity is associated with state-anxiety changes during single-session transcranial direct current stimulation. Front Hum Neurosci. 2019;13. https://doi.org/10.3389/fnhum.2019.00266.

  155. McIntire LK, McKinley RA, Goodyear C, Nelson J. A comparison of the effects of transcranial direct current stimulation and caffeine on vigilance and cognitive performance during extended wakefulness. Brain Stimulat. 2014;7(4):499–507. https://doi.org/10.1016/j.brs.2014.04.008.

    Article  Google Scholar 

  156. Kiers L, Cros D, Chiappa K, Fang J. Variability of motor potentials evoked by transcranial magnetic stimulation. - PubMed - NCBI. https://www.ncbi.nlm.nih.gov/pubmed/7507428. Accessed Dec 5, 2019.

  157. Darling WG, Wolf SL, Butler AJ. Variability of motor potentials evoked by transcranial magnetic stimulation depends on muscle activation. Exp Brain Res. 2006;174(2):376–85. https://doi.org/10.1007/s00221-006-0468-9.

    Article  PubMed  PubMed Central  Google Scholar 

  158. McLaren ME, Nissim NR, Woods AJ. The effects of medication use in transcranial direct current stimulation: a brief review. Brain Stimulat. 2018;11(1):52–8. https://doi.org/10.1016/j.brs.2017.10.006.

    Article  Google Scholar 

  159. Guerra A, López-Alonso V, Cheeran B, Suppa A. Variability in non-invasive brain stimulation studies: reasons and results. Neurosci Lett. 2017;133330. https://doi.org/10.1016/j.neulet.2017.12.058.

  160. Agnew WF, McCreery DB. Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery. 1987;20(1):143–7. https://doi.org/10.1097/00006-198701000-00030.

    Article  PubMed  CAS  Google Scholar 

  161. Datta A, Bikson M, Fregni F. Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow. NeuroImage. 2010;52(4):1268–78. https://doi.org/10.1016/j.neuroimage.2010.04.252.

    Article  PubMed  Google Scholar 

  162. Demirtas-Tatlidede A, Vahabzadeh-Hagh AM, Bernabeu M, Tormos JM, Pascual-Leone A. Noninvasive brain stimulation in traumatic brain injury. J Head Trauma Rehabil. 2012;27(4):274–92. https://doi.org/10.1097/HTR.0b013e318217df55.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Kuo M-F, Nitsche MA. Effects of transcranial electrical stimulation on cognition. Clin EEG Neurosci. 2012;43(3):192–9. https://doi.org/10.1177/1550059412444975.

    Article  PubMed  Google Scholar 

  164. Cantarero G, Spampinato D, Reis J, et al. Cerebellar direct current stimulation enhances on-line motor skill acquisition through an effect on accuracy. J Neurosci. 2015;35(7):3285–90. https://doi.org/10.1523/JNEUROSCI.2885-14.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Alonzo A, Brassil J, Taylor JL, Martin D, Loo CK. Daily transcranial direct current stimulation (tDCS) leads to greater increases in cortical excitability than second daily transcranial direct current stimulation. Brain Stimulat. 2012;5(3):208–13. https://doi.org/10.1016/j.brs.2011.04.006.

    Article  Google Scholar 

  166. Lindenberg R, Zhu LL, Schlaug G. Combined central and peripheral stimulation to facilitate motor recovery after stroke: the effect of number of sessions on outcome. Neurorehabil Neural Repair. 2012;26(5):479–83. https://doi.org/10.1177/1545968311427568.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Monte-Silva K, Kuo M-F, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulat. 2013;6(3):424–32. https://doi.org/10.1016/j.brs.2012.04.011.

    Article  Google Scholar 

  168. Batsikadze G, Moliadze V, Paulus W, Kuo M-F, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(Pt 7):1987–2000. https://doi.org/10.1113/jphysiol.2012.249730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Amadi U, Allman C, Johansen-Berg H, Stagg CJ. The homeostatic interaction between anodal transcranial direct current stimulation and motor learning in humans is related to GABAA activity. Brain Stimulat. 2015;8(5):898–905. https://doi.org/10.1016/j.brs.2015.04.010.

    Article  Google Scholar 

  170. Cabral ME, Baltar A, Borba R, et al. Transcranial direct current stimulation: before, during, or after motor training? Neuroreport. 2015;26(11):618–22. https://doi.org/10.1097/WNR.0000000000000397.

    Article  PubMed  Google Scholar 

  171. Rumpf J-J, Wegscheider M, Hinselmann K, et al. Enhancement of motor consolidation by post-training transcranial direct current stimulation in older people. Neurobiol Aging. 2017;49:1–8. https://doi.org/10.1016/j.neurobiolaging.2016.09.003.

    Article  PubMed  Google Scholar 

  172. Bikson M, Bestmann S, Edwards D. Neuroscience: transcranial devices are not playthings. Nature. 2013;501(7466):167. https://doi.org/10.1038/501167b.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Reis J, Fischer JT, Prichard G, Weiller C, Cohen LG, Fritsch B. Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb Cortex N Y NY. 2015;25(1):109–17. https://doi.org/10.1093/cercor/bht208.

    Article  Google Scholar 

  174. Stagg CJ, Jayaram G, Pastor D, Kincses ZT, Matthews PM, Johansen-Berg H. Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia. 2011;49(5):800–4. https://doi.org/10.1016/j.neuropsychologia.2011.02.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Sattler V, Acket B, Raposo N, et al. Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehabil Neural Repair. 2015;29(8):743–54. https://doi.org/10.1177/1545968314565465.

    Article  PubMed  Google Scholar 

  176. Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24(6):590–6. https://doi.org/10.1097/WCO.0b013e32834c3db0.

    Article  PubMed  Google Scholar 

  177. Stinear CM, Byblow WD. Predicting and accelerating motor recovery after stroke. Curr Opin Neurol. 2014;27(6):624–30. https://doi.org/10.1097/WCO.0000000000000153Stroke recovery predictions based on the presence or absence of an MEP immediately after stroke.

    Article  PubMed  CAS  Google Scholar 

  178. Wang QM, Cui H, Han SJ, et al. Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neurosci Lett. 2014;569:6–11. https://doi.org/10.1016/j.neulet.2014.03.011.

    Article  PubMed  CAS  Google Scholar 

  179. Pavlova EL, Semenov RV, Guekht AB. Effect of tDCS on fine motor control of patients in subacute and chronic post-stroke stages. J Mot Behav. 2019:1–13. https://doi.org/10.1080/00222895.2019.1639608.

  180. Yoon KJ, Oh B-M, Kim D-Y. Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res. 2012;1452:61–72. https://doi.org/10.1016/j.brainres.2012.02.062.

    Article  PubMed  CAS  Google Scholar 

  181. Bestmann S, de Berker AO, Bonaiuto J. Understanding the behavioural consequences of noninvasive brain stimulation. Trends Cogn Sci. 2015;19(1):13–20. https://doi.org/10.1016/j.tics.2014.10.003.

    Article  PubMed  Google Scholar 

  182. Huang L, Deng Y, Zheng X, Liu Y. Transcranial direct current stimulation with halo sport enhances repeated sprint cycling and cognitive performance. Front Physiol. 2019;10:118. https://doi.org/10.3389/fphys.2019.00118.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Cantarero.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rehabilitation Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pruski, A., Cantarero, G. Transcranial Direct Current Stimulation for Motor Recovery Following Brain Injury. Curr Phys Med Rehabil Rep 8, 268–279 (2020). https://doi.org/10.1007/s40141-020-00262-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00262-8

Keywords

Navigation