Skip to main content
Log in

Neuromodulation in Childhood Onset Dystonia: Evolving Role of Deep Brain Stimulation

  • Rehabilitation Technology (R Harvey, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review will provide an update on the current status of deep brain stimulation in pediatric onset dystonias.

Recent Findings

Dystonia is a complex movement disorder that may occur in isolation or in combination with other abnormalities of tone and posture. The dystonias represent a heterogeneous group of movement disorders that can be progressive, painful, and severely disabling. Genetic and extrinsic factors may influence the treatment response. Pharmacologic treatment often has limited effectiveness and unacceptable, unwanted effects. Neuromodulation by deep brain stimulation (DBS) is a targeted therapy that continues to evolve as a treatment option for children with medically refractory dystonia due to a variety of etiologies. We share some insights from our surgical experience with 124 children with dystonia treated by DBS and review the current literature on the use of DBS in pediatric onset dystonia.

Summary

Advances in surgical options make the surgery more tolerable for young children. Secondary dystonia, in particular cerebral palsy, is more common than primary genetic etiologies. Both may respond to DBS, which may be considered once medical management has failed. Data sharing through registry platforms such as PEDiDBS is a vital component for expanding our knowledge base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Task Force on Childhood Motor Disorders: classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111(1):e89–97.

    Article  PubMed  Google Scholar 

  2. Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS, et al. Phenomenology and classification of dystonia: a consensus update. Mov Dis. 2013;28(7):863–73. https://doi.org/10.1002/mds.25475.

    Article  Google Scholar 

  3. • Koy A, Lin J-P, Sanger TD, Marks WA, Mink JW, Timmermann L. Advances in management of movement disorders in children. Lancet Neurol. 2016;15:719–35. This article provides an overview of general management principles of pediatric movement disorders including the potential role of DBS.

    Article  PubMed  Google Scholar 

  4. •• Fehlings D, Brown L, Harvey A, Himmelmann K, Lin JP, et al. Pharmacological and neurosurgical interventions for managing dystonia in cerebral palsy: a systematic review. Dev Med Child Neurol. 2018;60(4):356–66. This is the most current expert consensus review on the pharmacologic and neuromodulation options for cerebral palsy.

    Article  PubMed  Google Scholar 

  5. Coupland CC, Hill T, Dening T, Morriss R, Moore M. Hippisley-cox J, Anticholinergic drug exposure and the risk of dementia: a nested case-control study. JAMA Internal Med. 2019;179(8):1084–93. https://doi.org/10.1001/jamainternmed.2019.0677.

    Article  Google Scholar 

  6. Levy RM. The evolving definition of neuromodulation. Neuromodulation. 2014;17(3):207–10. https://doi.org/10.1111/ner.12194.

    Article  PubMed  Google Scholar 

  7. U.S. Food and Drug Administration (2003) Medtronic Activa deep brain stimulation (DBS) system. Silver Spring, MD. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfhde/hde.cfm?id=375511 Accessed 15 Apr 2003.

  8. Chiken S, Nambu A. Disrupting neuronal transmission: mechanism of DBS? Front Syst Neurosci. 2014;8:33. https://doi.org/10.3389/fnsys.2014.00033.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lumsden DE, Ashmore J, Charles-Edwards G, Selway R, Lin JP, Ashkan K. Observation and modeling of deep brain stimulation electrode depth in the pallidal target of the developing brain. World Neurosurg. 2015;83(4):438–46. https://doi.org/10.1016/j.wneu.2015.01.012.

    Article  PubMed  Google Scholar 

  10. Park HR, Lee JM, Ehm G, Yang HJ, Song IH, Lim YH, et al. Long-term clinical outcome of internal globus pallidus deep brain stimulation for dystonia. PLoS One. 2016;11(1):e0146644. https://doi.org/10.1371/journal.pone.0146644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ostrem JL, San Luciano M, Dodenhoff KA, Ziman N, Markun LC, Racine CA, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology. 2017;88(1):25–35.

    Article  PubMed  Google Scholar 

  12. • Sanger TD, Liker M, Arguelles E, Deshpande R, Maskooki A, Ferman D, et al. Pediatric deep brain stimulation using awake recording and stimulation for target selection in an inpatient neuromodulation unit. Brain Sci. 2018;8:135. This article explores a new approach to DBS using temporary electrodes to help define the pathophysiology and therapeutic response to multiple potential targets for DBS in refractory dystonia.

    Article  PubMed Central  Google Scholar 

  13. Sokal P, Rudas M, Harat M, Szylberg L, Zielinski P. Deep anterior cerebellar stimulation reduces symptoms of secondary dystonia in patients with cerebral palsy treated due to spasticity. Clin Neurol Neurosurg. 2015;135:62–8.

    Article  PubMed  Google Scholar 

  14. Marks WA, Honeycutt J, Acosta FA Jr, Reed M. Pediatric deep brain stimulation. Semin Pediatr Neurol. 2009;16(2):90–8.

    Article  PubMed  Google Scholar 

  15. Darrow E. In: Soriano ES, CD MC, editors. Anesthetic considerations for deep brain stimulator placement, Essentials of pediatric neuroanesthesia: Cambridge University press; 2018.

  16. Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Seigneuret E, et al. Frameless ROSA robot- assisted lead implantation for deep brain stimulation: technique and accuracy. Oper Neurosurg. 2019;0:1–8. https://doi.org/10.1093/ons/opz320.

    Article  Google Scholar 

  17. Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL. Interventional MRI–guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediatrics. 2014;14:400–8.

    Article  Google Scholar 

  18. Krause P, Lauritsch K, Lipp A, Horn A, Weschke B, Kupsch A, et al. Long-term results of deep brain stimulation in a cohort of eight children with isolated dystonia. J Neurol. 2016;263(11):2319–26.

    Article  CAS  PubMed  Google Scholar 

  19. • Ostrem JL, San Luciano M, Dodenhoff KA, Ziman N, Markun LC, Racine CA, et al. Subthalamic nucleus deep brain stimulation in isolated dystonia: a 3-year follow-up study. Neurology. 2017;88(1):25–35. This article highlights the value of STN as an alternative target for dystonia.

    Article  PubMed  Google Scholar 

  20. Panov F, Tagliati M, Ozelius LJ, Fuchs T, Gologorsky Y, Cheung T, et al. Pallidal deep brain stimulation for DYT6 dystonia. J Neurol Neurosurg Psychiatry. 2012;83(2):182–7.

    Article  PubMed  Google Scholar 

  21. Groen JL, Ritz K, Contarino MF, van de Warrenburg BP, Aramideh M, Foncke EM, et al. DYT6 dystonia: mutation screening, phenotype, and response to deep brain stimulation. Mov Disord. 2010;25(14):2420–7.

    Article  PubMed  Google Scholar 

  22. Miri S, Shahidi GA, Parvarash M, Rohani M. Pallidal deep brain stimulation for the treatment of DYT6 dystonia: a case report and review of literature. Med J Islam Repub Iran. 2014;28:39.

    PubMed  PubMed Central  Google Scholar 

  23. Ghosh D, Indulkar S. Primary myoclonus-dystonia: a diagnosis often missed in children. Neurology. 2012;78(1 Supplement):P02.170.

    Google Scholar 

  24. • Hainque E, Vidailhet M, Cozic N, Charbonnier-Beaupel F, Thobois S, et al. A randomized, controlled, double-blind, crossover trial of zonisamide in myoclonus-dystonia. Neurology. 2016;86(18):1729–35. This clinical trial is important as it offers an important option to consider prior to DBS implantation in patients with myoclonus-dystonia.

    Article  CAS  PubMed  Google Scholar 

  25. Gruber D, Kühn AA, Schoenecker T, Kivi A, Trottenberg T, Hoffmann KT, et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Mov Disord. 2010;25(11):1733–43. https://doi.org/10.1002/mds.23312.

    Article  PubMed  Google Scholar 

  26. Roze E, Lang AE, Vidailhet M. Myoclonus-dystonia: classification, phenomenology, pathogenesis, and treatment. Curr Opin Neurol. 2018 Aug;31(4):484–90.

    Article  PubMed  Google Scholar 

  27. Wang JW, Li JP, Wang YP, Zhang XH, Zhang YQ. Deep brain stimulation for myoclonus-dystonia syndrome with double mutations in DYT1 and DYT11. Sci Rep. 2017;7:41042. https://doi.org/10.1038/srep41042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Danti FR, Galosi S, Romani M, Montomoli M, Carss KJ, Raymond FL, et al. GNAO1 encephalopathy: broadening the phenotype and evaluating treatment and outcome. Neurol Genet. 2017;3(2):143.

    Article  Google Scholar 

  29. Koy A, Cirak S, Gonzalez V, Becker K, Roujeau T, Milesi C, et al. Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperkinesia. J Neurol Sci. 2018;391:31–9.

    Article  CAS  PubMed  Google Scholar 

  30. Honey CM, Malhotra AK, Tarailo-Graovac M, van Karnebeek CDM, Horvath G, Sulistyanto A. GNAO1 mutation-induced pediatric dystonic storm rescue with pallidal deep brain stimulation. J Child Neurol. 2018;33(6):413–6.

    Article  PubMed  Google Scholar 

  31. Dy ME, Chang FCF, Jesus SD, Anselm I, Mahant N, Zeilman P, et al. Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol. 2016;31(8):1027–35.

    Article  PubMed  Google Scholar 

  32. • Elia AE, Bagella CF, Ferré F, Zorzi G, Calandrella D, Romito LM. Deep brain stimulation for dystonia due to cerebral palsy: a review. Eur J Paediatr Neurol. 2018;22(2):308–15. This article provides an important review of the role of DBS in pediatric patients with dystonia related to cerebral palsy.

    Article  PubMed  Google Scholar 

  33. Marks WA, Bailey L, Reed MA, Pomykal A, Mercer M, Acosta F Jr, et al. Pallidal stimulation in children: comparison between cerebral palsy and Dyt-1 related dystonia. J Child Neurol. 2013;28:840–8.

    Article  PubMed  Google Scholar 

  34. Marks WA, Honeycutt J, Acosta F Jr, Reed M, Bailey L, Pomykal A, et al. Dystonia due to cerebral palsy responds to deep brain stimulation of the globus pallidus internus. Mov Disord. 2011;26(9):1748–51.

    Article  PubMed  Google Scholar 

  35. Romito LM, Zorzi G, Marras CE, Franzini A, Nardocci N, Albanese A. Pallidal stimulation for acquired dystonia due to cerebral palsy: beyond 5 years. Eur J Neurol. 2015;22(3):426–e32.

    Article  CAS  PubMed  Google Scholar 

  36. Owen T, Adegboye D, Gimeno H, Selway R, Lin JP. Stable cognitive functioning with improved perceptual reasoning in children with dyskinetic cerebral palsy and other secondary dystonias after deep brain stimulation. Eur J Paediatr Neurol. 2017;21(1):193–201.

    Article  PubMed  Google Scholar 

  37. • Koy A, Timmermann L. Deep brain stimulation in cerebral palsy: challenges and opportunities. Eur J Paediatr Neurol. 2017;21(1):118–21. https://doi.org/10.1016/j.ejpn.2016.05.015. This article provides an important review of the role of DBS in pediatric patients with dystonia related to cerebral palsy.

    Article  PubMed  Google Scholar 

  38. National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, Department of Health, Education and Welfare (DHEW). The Belmont report. Washington, DC: Government Printing Office; 1978.

    Google Scholar 

  39. Austin A, Lin JP, Selway R, Ashkan K, Owen T. What parents think and feel about deep brain stimulation in paediatric secondary dystonia including cerebral palsy: a qualitative study of parental decision-making. Eur J Paediatr Neurol. 2017;21(1):185–92.

    Article  PubMed  Google Scholar 

  40. Kuiper M, Vrijenhoek R, Brandsma R, Lunsing R, Burger H, Eggink, et al. The Burke–Fahn–Marsden dystonia rating scale is age-dependent in healthy children. Mov Disord Clin Pract. 2016;3(6):580–6. https://doi.org/10.1002/mdc3.12339.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Burke RE, Fahn S, Marsedn CD, Bressman SB, Moskowitz C, Friedman J. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology. 1985;35:73–7.

    Article  CAS  PubMed  Google Scholar 

  42. Barry MJ, VanSwearingen JM, Albright AL. Reliability and responsiveness of the Barry-Albright dystonia scale. Dev Med Child Neurol. 1999;41(6):404–11. https://doi.org/10.1017/s0012162299000870.

    Article  CAS  PubMed  Google Scholar 

  43. Monbaliu E, Ortibus E, De Cat J, Dan B, Heyrman L, Prinzie P, et al. The dyskinesia impairment scale: a new instrument to measure dystonia and choreoathetosis in cerebral palsy. Dev Med Child Neurol. 2012;54(3):278–83. https://doi.org/10.1111/j.1469-8749.2011.04209.x.

    Article  PubMed  Google Scholar 

  44. Jansen-van der Weide MC, CMW G, Roes KCB, Pontes C, Vives R, et al. Rare disease registries: potential applications towards impact on development of new drug treatments. Orphanet J Rare Dis. 2018;13(1):154. https://doi.org/10.1186/s13023-018-0836-0.

    Article  PubMed  PubMed Central  Google Scholar 

  45. • Marks W, Bailey L, Sanger TD. PEDiDBS: The pediatric international deep brain stimulation registry project. Eur J Paediatr Neurol. 2017;21(1):218–22. https://doi.org/10.1016/j.ejpn.2016.06.002. This article highlights the need and introduces a mechanism for data sharing across centers performing DBS on pediatric patients.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren A. Marks.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rehabilitation Technology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marks, W.A., Acord, S., Bailey, L. et al. Neuromodulation in Childhood Onset Dystonia: Evolving Role of Deep Brain Stimulation. Curr Phys Med Rehabil Rep 8, 37–43 (2020). https://doi.org/10.1007/s40141-020-00258-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-020-00258-4

Keywords

Navigation