Skip to main content

Advertisement

Log in

Predictors of Epidural Depth and the Role of Technology

  • Regional Anesthesia (P Kukreja, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Epidural anesthesia and analgesia are commonly used for a number of medical and surgical procedures. Although the blind loss of resistance is usually successful in experienced hands, it can be challenging at times. Imaging technology is increasingly used to assist in the accurate localization of the epidural depth (ED). When compared to the blind loss of resistance technique, ultrasound measurements slightly underestimated; computed tomography slightly overestimated; while MRI depth measurement was more accurate, although it occasionally overestimated the ED. Ultrasound imaging resulted in fewer placement trials and increased the chances of success. The strongest predictor of epidural depth is body weight and body mass index. The epidural space is deeper in men than in women and in pregnant than in non-pregnant women. The role of ethnicity was studied in parturients and found to be deeper in patients of African origin and shallowest in the east Asian parturients. Regarding the level of insertion, it is deepest at the cervicothoracic and lumbosacral areas and the shallowest at the thoracolumbar area. It is also deeper when using the lateral, compared to the sitting position, and when using the paramedian or off-the-midline approach than the midline. The height, age, and technique probably have no effect or are controversial at best. The posterior epidural distance is smallest at the cervical level, enlarges as one moves caudally, and is largest at L4–5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldrete JA, et al. Skin to cervical epidural space distances as read from magnetic resonance imaging films: consideration of the “hump pad.” J Clin Anesth. 1998;10(4):309–13.

    Article  CAS  PubMed  Google Scholar 

  2. Palmer SK, et al. Distance from the skin to the lumbar epidural space in an obstetric population. Anesth Analg. 1983;62(10):944–6.

    Article  CAS  PubMed  Google Scholar 

  3. Watts RW. The influence of obesity on the relationship between body mass index and the distance to the epidural space from the skin. Anaesth Intensive Care. 1993;21(3):309–10.

    Article  CAS  PubMed  Google Scholar 

  4. Balki M. Locating the epidural space in obstetric patients-ultrasound a useful tool: continuing professional development. Can J Anaesth. 2010;57(12):1111–26.

    Article  PubMed  Google Scholar 

  5. Han KR, et al. Distance to the adult cervical epidural space. Reg Anesth Pain Med. 2003;28(2):95–7.

    Article  PubMed  Google Scholar 

  6. Sutton DN, Linter SP. Depth of extradural space and dural puncture. Anaesthesia. 1991;46(2):97–8.

    Article  CAS  PubMed  Google Scholar 

  7. Peralta F, et al. The relationship of body mass index with the incidence of postdural puncture headache in parturients. Anesth Analg. 2015;121(2):451–6.

    Article  PubMed  Google Scholar 

  8. Fujinaka MK, et al. Cervical epidural depth: correlation between needle angle, cervical anatomy, and body surface area. Pain Med. 2012;13(5):665–9.

    Article  PubMed  Google Scholar 

  9. Lirk P, et al. Accuracy in estimating the correct intervertebral space level during lumbar, thoracic and cervical epidural anaesthesia. Acta Anaesthesiol Scand. 2004;48(3):347–9.

    Article  CAS  PubMed  Google Scholar 

  10. Algrain H, et al. Cervical epidural depth: correlation between cervical MRI measurements of the skin-to-cervical epidural space and the actual needle depth during interlaminar cervical epidural injections. Pain Med. 2018;19(5):1015–22.

    Article  PubMed  Google Scholar 

  11. Lai HC, et al. Depth of the thoracic epidural space in paramedian approach. J Clin Anesth. 2005;17(5):339–43.

    Article  PubMed  Google Scholar 

  12. Adachi YU, Sanjo Y, Sato S. The epidural space is deeper in elderly and obese patients in the Japanese population. Acta Anaesthesiol Scand. 2007;51(6):731–5.

    Article  CAS  PubMed  Google Scholar 

  13. Piccioni F, et al. Weight and BMI are the most important predictors influencing the needle insertion distance to the thoracic epidural space. Eur J Anaesthesiol. 2015;32(11):820–2.

    Article  PubMed  Google Scholar 

  14. Hirabayashi Y, et al. Magnetic resonance imaging of the extradural space of the thoracic spine. Br J Anaesth. 1997;79(5):563–6.

    Article  CAS  PubMed  Google Scholar 

  15. Kim SH, et al. Sonographic estimation of needle depth for cervical epidural blocks. Anesth Analg. 2008;106(5):1542–7 table of contents.

    Article  PubMed  Google Scholar 

  16. Jones JH, et al. Assessing the agreement between radiologic and clinical measurements of lumbar and cervical epidural depths in patients undergoing prone interlaminar epidural steroid injection. Anesth Analg. 2017;124(5):1678–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y, et al. Suitable depth of epidural puncture in nulliparous pregnant woman. Cell Biochem Biophys. 2015;71(2):875–80.

    Article  CAS  PubMed  Google Scholar 

  18. Harrison GR, Clowes NW. The depth of the lumbar epidural space from the skin. Anaesthesia. 1985;40(7):685–7.

    Article  CAS  PubMed  Google Scholar 

  19. Meiklejohn BH. Distance from skin to the lumbar epidural space in an obstetric population. Reg Anesth. 1990;15(3):134–6.

    CAS  PubMed  Google Scholar 

  20. Kaydu A, et al. Examination of spinal canal anatomy with MRI measurements in lumbar disc herniation patients: an anesthesiologist viewpoint. Anesth Essays Res. 2021;15(1):38–44.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rasoulian A, et al. Utility of prepuncture ultrasound for localization of the thoracic epidural space. Can J Anaesth. 2011;58(9):815–23.

    Article  PubMed  Google Scholar 

  22. Ravi KK, et al. Distance from skin to epidural space: correlation with body mass index (BMI). J Anaesthesiol Clin Pharmacol. 2011;27(1):39–42.

    Article  PubMed  PubMed Central  Google Scholar 

  23. D’Alonzo RC, et al. Ethnicity and the distance to the epidural space in parturients. Reg Anesth Pain Med. 2008;33(1):24–9.

    Article  PubMed  Google Scholar 

  24. Hamza J, et al. Parturient’s posture during epidural puncture affects the distance from skin to epidural space. J Clin Anesth. 1995;7(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  25. Chen KP, Poon YY, Wong CH. The depth to the epidural space. Ma Zui Xue Za Zhi. 1989;27(4):353–6.

    CAS  PubMed  Google Scholar 

  26. Bevacqua BK, Haas T, Brand F. A clinical measure of the posterior epidural space depth. Reg Anesth. 1996;21(5):456–60.

    CAS  PubMed  Google Scholar 

  27. Sutherland GPR, Shaw M, Broom MA. Predicting epidural space depth in an obstetric population using patient demographics: an observational study of 1534 patients. Eur J Anaesthesiol. 2021;38(7):794–6.

    Article  PubMed  Google Scholar 

  28. Clinkscales CP, et al. An observational study of the relationship between lumbar epidural space depth and body mass index in Michigan parturients. Int J Obstet Anesth. 2007;16(4):323–7.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao Q, et al. The distance from skin to cervical and high thoracic epidural space on Chinese adults as read from MRI. Pain Physician. 2014;17(2):163–8.

    PubMed  Google Scholar 

  30. Tran D, et al. Preinsertion paramedian ultrasound guidance for epidural anesthesia. Anesth Analg. 2009;109(2):661–7.

    Article  PubMed  Google Scholar 

  31. Hirabayashi Y, et al. The distance from the skin to the epidural space. J Anesth. 1988;2(2):198–201.

    Article  CAS  PubMed  Google Scholar 

  32. Carnie J, Boden J, Gao Smith F. Prediction by computerised tomography of distance from skin to epidural space during thoracic epidural insertion. Anaesthesia. 2002;57(7):701–4.

    Article  CAS  PubMed  Google Scholar 

  33. Grau T, et al. Ultrasound imaging of the thoracic epidural space. Reg Anesth Pain Med. 2002;27(2):200–6.

    Article  CAS  PubMed  Google Scholar 

  34. Kao MC, et al. Prediction of the distance from skin to epidural space for low-thoracic epidural catheter insertion by computed tomography. Br J Anaesth. 2004;92(2):271–3.

    Article  CAS  PubMed  Google Scholar 

  35. Salman A, et al. Ultrasound imaging of the thoracic spine in paramedian sagittal oblique plane: the correlation between estimated and actual depth to the epidural space. Reg Anesth Pain Med. 2011;36(6):542–7.

    Article  PubMed  Google Scholar 

  36. Kessler J, Moriggl B, Grau T. The use of ultrasound improves the accuracy of epidural needle placement in cadavers. Surg Radiol Anat. 2014;36(7):695–703.

    Article  PubMed  Google Scholar 

  37. Kosturakis A, et al. Using computed tomography scans and patient demographic data to estimate thoracic epidural space depth. Pain Res Treat. 2015;2015:470240.

    PubMed  PubMed Central  Google Scholar 

  38. Sahota JS, et al. Ultrasound estimates for midline epidural punctures in the obese parturient: paramedian sagittal oblique is comparable to transverse median plane. Anesth Analg. 2013;116(4):829–35.

    Article  PubMed  Google Scholar 

  39. Singh S, et al. Epidural catheter placement in morbidly obese parturients with the use of an epidural depth equation prior to ultrasound visualization. Sci World J. 2013;2013:695209.

    Article  Google Scholar 

  40. Balki M, et al. Ultrasound imaging of the lumbar spine in the transverse plane: the correlation between estimated and actual depth to the epidural space in obese parturients. Anesth Analg. 2009;108(6):1876–81.

    Article  PubMed  Google Scholar 

  41. Nishiyama T. Thoracic epidural catheterization using ultrasound in obese patients for bariatric surgery. J Res Obes 2014; 2014 (2014)

  42. Wang Q, Yin C, Wang TL. Ultrasound facilitates identification of combined spinal-epidural puncture in obese parturients. Chin Med J (Engl). 2012;125(21):3840–3.

    PubMed  Google Scholar 

  43. Sharma V, et al. Effect of ethnicity and body mass index on the distance from skin to lumbar epidural space in parturients. Anaesthesia. 2011;66(10):907–12.

    Article  CAS  PubMed  Google Scholar 

  44. Shiroyama K, et al. Distance from the skin to the epidural space at the first lumbar interspace in a Japanese obstetric population. Hiroshima J Med Sci. 2003;52(2):27–9.

    PubMed  Google Scholar 

  45. Grau T, et al. The lumbar epidural space in pregnancy: visualization by ultrasonography. Br J Anaesth. 2001;86(6):798–804.

    Article  CAS  PubMed  Google Scholar 

  46. Helayel PE, et al. Evaluating the depth of the epidural space with the use of ultrasound. Rev Bras Anestesiol. 2010;60(4):376–82.

    Article  PubMed  Google Scholar 

  47. Grau T, et al. Efficacy of ultrasound imaging in obstetric epidural anesthesia. J Clin Anesth. 2002;14(3):169–75.

    Article  PubMed  Google Scholar 

  48. Arzola C, et al. Ultrasound using the transverse approach to the lumbar spine provides reliable landmarks for labor epidurals. Anesth Analg. 2007;104(5):1188–92 tables of contents.

    Article  PubMed  Google Scholar 

  49. Grau T, et al. Real-time ultrasonic observation of combined spinal-epidural anaesthesia. Eur J Anaesthesiol. 2004;21(1):25–31.

    CAS  PubMed  Google Scholar 

  50. Cork RC, Kryc JJ, Vaughan RW. Ultrasonic localization of the lumbar epidural space. Anesthesiology. 1980;52(6):513–6.

    Article  CAS  PubMed  Google Scholar 

  51. Currie JM. Measurement of the depth to the extradural space using ultrasound. Br J Anaesth. 1984;56(4):345–7.

    Article  CAS  PubMed  Google Scholar 

  52. Bahk JH, et al. Computed tomographic study of lumbar (L3–4) epidural depth and its relationship to physical measurements in young adult men. Reg Anesth Pain Med. 1998;23(3):262–5.

    CAS  PubMed  Google Scholar 

  53. Saravanakumar K, Rao SG, Cooper GM. Obesity and obstetric anaesthesia. Anaesthesia. 2006;61(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  54. Hood DD, Dewan DM. Anesthetic and obstetric outcome in morbidly obese parturients. Anesthesiology. 1993;79(6):1210–8.

    Article  CAS  PubMed  Google Scholar 

  55. Perlow JH, Morgan MA. Massive maternal obesity and perioperative cesarean morbidity. Am J Obstet Gynecol. 1994;170(2):560–5.

    Article  CAS  PubMed  Google Scholar 

  56. Bamgbade OA, et al. Obstetric anaesthesia outcome in obese and non-obese parturients undergoing caesarean delivery: an observational study. Int J Obstet Anesth. 2009;18(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  57. Vricella LK, et al. Anesthesia complications during scheduled cesarean delivery for morbidly obese women. Am J Obstet Gynecol. 2010;203(3):276 e1-5.

    Article  Google Scholar 

  58. Gerig HJ, Kern F. Success and failure rate in peridural anesthesia. A 1-year study. Reg Anaesth. 1985;8(2):25–32.

    CAS  PubMed  Google Scholar 

  59. Le Coq G, Ducot B, Benhamou D. Risk factors of inadequate pain relief during epidural analgesia for labour and delivery. Can J Anaesth. 1998;45(8):719–23.

    Article  PubMed  Google Scholar 

  60. Ehrenberg HM, et al. Prevalence of maternal obesity in an urban center. Am J Obstet Gynecol. 2002;187(5):1189–93.

    Article  PubMed  Google Scholar 

  61. Lau HP. The distance from the skin to the epidural space in a Chinese patient population. Ma Zui Xue Za Zhi. 1989;27(3):261–4.

    CAS  PubMed  Google Scholar 

  62. Prakash S, et al. A prospective observational study of skin to subarachnoid space depth in the Indian population. Indian J Anaesth. 2014;58(2):165–70.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Taman HI, Farid AM, Abdelghaffar WM. Measuring skin to subarachnoid space depth in Egyptian population: a prospective cohort study. Anesth Essays Res. 2016;10(3):468–72.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tan SH, Teo EC, Chua HC. Quantitative three-dimensional anatomy of lumbar vertebrae in Singaporean Asians. Eur Spine J. 2002;11(2):152–8.

    Article  CAS  PubMed  Google Scholar 

  65. Deurenberg P, Deurenberg-Yap M. Validity of body composition methods across ethnic population groups. Forum Nutr. 2003;56:299–301.

    PubMed  Google Scholar 

  66. Norgan NG. Population differences in body composition in relation to the body mass index. Eur J Clin Nutr. 1994;48(Suppl 3):S10-25 discussion S26-7.

    PubMed  Google Scholar 

  67. Konrad C, et al. Learning manual skills in anesthesiology: is there a recommended number of cases for anesthetic procedures? Anesth Analg. 1998;86(3):635–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ellinas EH, et al. The effect of obesity on neuraxial technique difficulty in pregnant patients: a prospective, observational study. Anesth Analg. 2009;109(4):1225–31.

    Article  PubMed  Google Scholar 

  69. Butwick A, et al. Retrospective analysis of anesthetic interventions for obese patients undergoing elective cesarean delivery. J Clin Anesth. 2010;22(7):519–26.

    Article  PubMed  Google Scholar 

  70. Keplinger M, et al. Lumbar neuraxial anatomical changes throughout pregnancy: a longitudinal study using serial ultrasound scans. Anaesthesia. 2016;71(6):669–74.

    Article  CAS  PubMed  Google Scholar 

  71. Bassiakou E, et al. The distance from the skin to the epidural and subarachnoid spaces in parturients scheduled for caesarean section. Minerva Anestesiol. 2011;77(2):154–9.

    CAS  PubMed  Google Scholar 

  72. Canturk M, Kocaoglu N, Hakki M. Abdominal girth has a strong correlation with actual and ultrasound estimated epidural depth. Turk J Med Sci. 2019;49(6):1715–20.

    PubMed  PubMed Central  Google Scholar 

  73. Grau T, et al. Paramedian access to the epidural space: the optimum window for ultrasound imaging. J Clin Anesth. 2001;13(3):213–7.

    Article  CAS  PubMed  Google Scholar 

  74. Neerken S, et al. Characterization of age-related effects in human skin: a comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt. 2004;9(2):274–81.

    Article  PubMed  Google Scholar 

  75. Gallagher D, et al. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985). 1997;83(1):229–39.

    Article  CAS  PubMed  Google Scholar 

  76. Borkan GA, et al. Comparison of body composition in middle-aged and elderly males using computed tomography. Am J Phys Anthropol. 1985;66(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  77. Gulay U, et al. Ultrasound-guided evaluation of the lumbar subarachnoid space in lateral and sitting positions in pregnant patients to receive elective cesarean operation. Pak J Med Sci. 2015;31(1):76–81.

    PubMed  PubMed Central  Google Scholar 

  78. Grau T, et al. Ultrasound control for presumed difficult epidural puncture. Acta Anaesthesiol Scand. 2001;45(6):766–71.

    Article  CAS  PubMed  Google Scholar 

  79. Hogan QH. Epidural anatomy: new observations. Can J Anaesth. 1998;45(5 Pt 2):R40–8.

    Article  CAS  PubMed  Google Scholar 

  80. Brummett CM, et al. A prospective, observational study of the relationship between body mass index and depth of the epidural space during lumbar transforaminal epidural steroid injection. Reg Anesth Pain Med. 2009;34(2):100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim LK, et al. Analysis of influencing factors to depth of epidural space for lumbar transforaminal epidural block in Korean. Korean J Pain. 2011;24(4):216–20.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hoffmann VL, et al. Posterior epidural space depth: safety of the loss of resistance and hanging drop techniques. Br J Anaesth. 1999;83(5):807–9.

    Article  CAS  PubMed  Google Scholar 

  83. Grau T, et al. Ultrasound imaging facilitates localization of the epidural space during combined spinal and epidural anesthesia. Reg Anesth Pain Med. 2001;26(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  84. Furness G, Reilly MP, Kuchi S. An evaluation of ultrasound imaging for identification of lumbar intervertebral level. Anaesthesia. 2002;57(3):277–80.

    Article  CAS  PubMed  Google Scholar 

  85. Watson MJ, Evans S, Thorp JM. Could ultrasonography be used by an anaesthetist to identify a specified lumbar interspace before spinal anaesthesia? Br J Anaesth. 2003;90(4):509–11.

    Article  CAS  PubMed  Google Scholar 

  86. Whitty R, Moore M, Macarthur A. Identification of the lumbar interspinous spaces: palpation versus ultrasound. Anesth Analg. 2008;106(2):538–40 table of contents.

    Article  PubMed  Google Scholar 

  87. Schlotterbeck H, et al. Ultrasonographic control of the puncture level for lumbar neuraxial block in obstetric anaesthesia. Br J Anaesth. 2008;100(2):230–4.

    Article  CAS  PubMed  Google Scholar 

  88. Broadbent CR, et al. Ability of anaesthetists to identify a marked lumbar interspace. Anaesthesia. 2000;55(11):1122–6.

    Article  CAS  PubMed  Google Scholar 

  89. Perlas A, Chaparro LE, Chin KJ. Lumbar neuraxial ultrasound for spinal and epidural anesthesia: a systematic review and meta-analysis. Reg Anesth Pain Med. 2016;41(2):251–60.

    Article  PubMed  Google Scholar 

  90. Wallace DH, et al. Indirect sonographic guidance for epidural anesthesia in obese pregnant patients. Reg Anesth. 1992;17(4):233–6.

    CAS  PubMed  Google Scholar 

  91. Greene NH, et al. Measurements of epidural space depth using preexisting CT scans correlate with loss of resistance depth during thoracic epidural catheter placement. Anesthesiol Res Pract. 2015;2015:545902.

    PubMed  PubMed Central  Google Scholar 

  92. Kim WJ, et al. Fluoroscope guided epidural needle insertion in midthoracic region: clinical evaluation of Nagaro’s method. Korean J Anesthesiol. 2012;62(5):441–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Patel A, Helm ER. Poster 381 depth assessment for cervical spinal epidural injections. PM R. 2016;8(9S):S285.

    Article  PubMed  Google Scholar 

  94. Hoffmann VL, et al. A new combined spinal-epidural apparatus: measurement of the distance to the epidural and subarachnoid spaces. Anaesthesia. 1997;52(4):350–5.

    Article  CAS  PubMed  Google Scholar 

  95. Capogna G, et al. Anatomy of the lumbar epidural region using magnetic resonance imaging: a study of dimensions and a comparison of two postures. Int J Obstet Anesth. 1997;6(2):97–100.

    Article  CAS  PubMed  Google Scholar 

  96. Nickalls RW, Kokri MS. The width of the posterior epidural space in obstetric patients. Anaesthesia. 1986;41(4):432–3.

    Article  CAS  PubMed  Google Scholar 

  97. Hogan QH. Lumbar epidural anatomy. A new look by cryomicrotome section. Anesthesiology. 1991;75(5):767–75.

    Article  CAS  PubMed  Google Scholar 

  98. Hollway TE, Telford RJ. Observations on deliberate dural puncture with a Tuohy needle: depth measurements. Anaesthesia. 1991;46(9):722–4.

    Article  CAS  PubMed  Google Scholar 

  99. Lyons G, Macdonald R, Mikl B. Combined epidural/spinal anaesthesia for caesarean section. Through the needle or in separate spaces? Anaesthesia. 1992;47(3):199–201.

    Article  CAS  PubMed  Google Scholar 

  100. Evans RW. Complications of lumbar puncture. Neurol Clin. 1998;16(1):83–105.

    Article  CAS  PubMed  Google Scholar 

  101. Westbrook JL, Renowden SA, Carrie LE. Study of the anatomy of the extradural region using magnetic resonance imaging. Br J Anaesth. 1993;71(4):495–8.

    Article  CAS  PubMed  Google Scholar 

  102. Vallejo MC, et al. Ultrasound decreases the failed labor epidural rate in resident trainees. Int J Obstet Anesth. 2010;19(4):373–8.

    Article  CAS  PubMed  Google Scholar 

  103. Abe KK, et al. Lumbar puncture needle length determination. Am J Emerg Med. 2005;23(6):742–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman Nada.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any author.

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nada, E. Predictors of Epidural Depth and the Role of Technology. Curr Anesthesiol Rep (2023). https://doi.org/10.1007/s40140-023-00573-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40140-023-00573-1

Keywords

Navigation