Skip to main content

Advertisement

Log in

Stromal Progenitor Cells in Mitigation of Non-hematopoietic Radiation Injuries

  • Tissue Pathobiology: Stem Cells, Reprogramming, Regenerative Medicine, Tissue Engineering (J Roy-Chowdhury, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Therapeutic exposure to high doses of radiation can severely impair organ function due to ablation of stem cells. Normal tissue injury is a dose-limiting toxicity for radiation therapy (RT). Although advances in the delivery of high-precision conformal RT has increased normal tissue sparing, mitigating and therapeutic strategies that could alleviate early and chronic radiation effects are urgently needed in order to deliver curative doses of RT, especially in abdominal, pelvic, and thoracic malignancies. Radiation-induced gastrointestinal injury is also a major cause of lethality from accidental or intentional exposure to whole-body irradiation in the case of nuclear accidents or terrorism. This review examines the therapeutic options for mitigation of non-hematopoietic radiation injuries.

Recent Findings

We have developed stem cell-based therapies for the mitigation of acute radiation syndrome and radiation-induced gastrointestinal syndrome. This is a promising option because of the robustness of standardized isolation and transplantation of stromal cell protocols, and their ability to support and replace radiation-damaged stem cells and stem cell niche. Stromal progenitor cells (SPC) represent a unique multipotent and heterogeneous cell population with regenerative, immunosuppressive, anti-inflammatory, and wound-healing properties. SPC are also known to secrete various key cytokines and growth factors such as platelet-derived growth factors, keratinocyte growth factor, R-spondins, and may consequently exert their regenerative effects via paracrine function. Additionally, secretory vesicles such as exosomes or microparticles can potentially be a cell-free alternative replacing the cell transplant in some cases.

Summary

This review highlights the beneficial effects of SPC on tissue regeneration with their ability to (a) target the irradiated tissues, (b) recruit host stromal cells, (c) regenerate endothelium and epithelium, (d) and secrete regenerative and immunomodulatory paracrine signals to control inflammation, ulceration, wound healing, and fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  PubMed  PubMed Central  Google Scholar 

  2. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD et al (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9(2):134–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Prasanna PG, Stone HB, Wong RS, Capala J, Bernhard EJ, Vikram B et al (2012) Normal tissue protection for improving radiotherapy: where are the Gaps? Transl Cancer Res 1(1):35–48

    PubMed  PubMed Central  Google Scholar 

  4. •• Saha S, Bhanja P, Kabarriti R, Liu L, Alfieri AA, Guha C. Bone marrow stromal cell transplantation mitigates radiation-induced gastrointestinal syndrome in mice. PLoS One. 2011;6(9):e24072. This study showed that SPC and MPC together rescue radiation induced gastrointestinal syndrome by providing regenerative signals to the ISC niche.

  5. • Ch’ang HJ, Lin LM, Chang PY, Luo CW, Chang YH, Chou CK, et al. Bone marrow transplantation enhances trafficking of host-derived myelomonocytic cells that rescue intestinal mucosa after whole body radiation. Radiother Oncol. 2012;104(3):401–7. This study demonstrated the importance of host myelomonocytic cells in the epithelial regeneration.

  6. •• Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, et al. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal. 2014;21(2):338–55. This is a comprehensive review that covers the therapeutic applications of various stem cell based strategies in mitigating radiation injuries leading to xerostomia, cognitive impairment , skin necrosis and fibrosis, liver disease, cardiac toxicity, and abdominal pathologies such as RIGS, proctitis, enteritis and PRD.

  7. Wang Y, Chen X, Cao W, Shi Y (2014) Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 15(11):1009–1016

    Article  CAS  PubMed  Google Scholar 

  8. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  CAS  PubMed  Google Scholar 

  9. Nicolay NH, Lopez Perez R, Debus J, Huber PE (2015) Mesenchymal stem cells—a new hope for radiotherapy-induced tissue damage? Cancer Lett 366(2):133–140

    Article  CAS  PubMed  Google Scholar 

  10. Brown M (2008) What causes the radiation gastrointestinal syndrome?: overview. Int J Radiat Oncol Biol Phys 70(3):799–800

    Article  PubMed  PubMed Central  Google Scholar 

  11. Francois S, Bensidhoum M, Mouiseddine M, Mazurier C, Allenet B, Semont A et al (2006) Local irradiation not only induces homing of human mesenchymal stem cells at exposed sites but promotes their widespread engraftment to multiple organs: a study of their quantitative distribution after irradiation damage. Stem Cells 24(4):1020–1029

    Article  PubMed  Google Scholar 

  12. Withers HR, Elkind MM (1970) Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol Relat Stud Phys Chem Med 17(3):261–267

    Article  CAS  PubMed  Google Scholar 

  13. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD et al (2011) A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478(7368):255–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    Article  CAS  PubMed  Google Scholar 

  15. Barker N, van Es JH, Jaks V, Kasper M, Snippert H, Toftgard R, et al. Very long-term self-renewal of small intestine, colon, and hair follicles from cycling Lgr5(+ve) stem cells. Cold Spring Harb Symp Quant Biol. 2008;73:351–6

  16. Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40(7):915–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Yan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA. 2012;109(2):466–71. This is a first study that demonstrated that a quiescent population of Bmi1 ISC at position 4 can replace Lgr5-ISC, the putative ISC and regenerate intestinal epithelium in response to radiation injury.

  18. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA (2011) Interconversion between intestinal stem cell populations in distinct niches. Science 334(6061):1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asfaha S, Hayakawa Y, Muley A, Stokes S, Graham TA, Ericksen RE et al (2015) Krt19/Lgr5 cells are radioresistant cancer-initiating stem cells in the colon and intestine. Cell Stem Cell 16(6):627–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haimovitz-Friedman A, Kan CC, Ehleiter D, Persaud RS, McLoughlin M, Fuks Z et al (1994) Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 180(2):525–535

    Article  CAS  PubMed  Google Scholar 

  21. Fuks Z, Haimovitz-Friedman A, Kolesnick RN. The role of the sphingomyelin pathway and protein kinase C in radiation-induced cell kill. Important Adv Oncol. 1995:19–31

  22. Okunieff P, Mester M, Wang J, Maddox T, Gong X, Tang D et al (1998) In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiat Res 150(2):204–211

    Article  CAS  PubMed  Google Scholar 

  23. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D et al (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297

    Article  CAS  PubMed  Google Scholar 

  24. Schuller BW, Rogers AB, Cormier KS, Riley KJ, Binns PJ, Julius R et al (2007) No significant endothelial apoptosis in the radiation-induced gastrointestinal syndrome. Int J Radiat Oncol Biol Phys 68(1):205–210

    Article  CAS  PubMed  Google Scholar 

  25. Ch’ang HJ, Maj JG, Paris F, Xing HR, Zhang J, Truman JP et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med. 11(5):484–490

    Article  CAS  PubMed  Google Scholar 

  26. Mason KA, Withers HR, McBride WH, Davis CA, Smathers JB (1989) Comparison of the gastrointestinal syndrome after total-body or total-abdominal irradiation. Radiat Res 117(3):480–488

    Article  CAS  PubMed  Google Scholar 

  27. Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H et al (2013) Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis 4:e685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garg S, Wang W, Prabath BG, Boerma M, Wang J, Zhou D et al (2014) Bone marrow transplantation helps restore the intestinal mucosal barrier after total body irradiation in mice. Radiat Res 181(3):229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cai Z, Cai D, Yao D, Chen Y, Wang J, Li Y (2016) Associations between body composition and nutritional assessments and biochemical markers in patients with chronic radiation enteritis: a case-control study. Nutr J 15(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rodriguez ML, Martin MM, Padellano LC, Palomo AM, Puebla YI (2010) Gastrointestinal toxicity associated to radiation therapy. Clin Transl Oncol 12(8):554–561

    Article  PubMed  Google Scholar 

  31. Xu W, Chen J, Liu X, Li H, Qi X, Guo X (2015) Autologous bone marrow stromal cell transplantation as a treatment for acute radiation enteritis induced by a moderate dose of radiation in dogs. Transl Res 171:38–51

    Article  PubMed  Google Scholar 

  32. Andreyev HJ, Wotherspoon A, Denham JW, Hauer-Jensen M (2010) Defining pelvic-radiation disease for the survivorship era. Lancet Oncol 11(4):310–312

    Article  PubMed  Google Scholar 

  33. Andreyev J (2007) Gastrointestinal symptoms after pelvic radiotherapy: a new understanding to improve management of symptomatic patients. Lancet Oncol 8(11):1007–1017

    Article  PubMed  Google Scholar 

  34. • Chapel A, Francois S, Douay L, Benderitter M, Voswinkel J. New insights for pelvic radiation disease treatment: Multipotent stromal cell is a promise mainstay treatment for the restoration of abdominopelvic severe chronic damages induced by radiotherapy. World J Stem Cells. 2013;5(4):106–11. This review encompasses the clinical application of SPC against pelvic radiation injuries arising from RT of the abdominal and pelvic malignancies.

  35. Fuccio L, Frazzoni L, Guido A (2015) Prevention of pelvic radiation disease. World J Gastrointest Pharmacol Ther 6(1):1–9

    Article  PubMed  PubMed Central  Google Scholar 

  36. Semont A, Demarquay C, Bessout R, Durand C, Benderitter M, Mathieu N (2013) Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration. PLoS One 8(7):e70170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Colwell JC, Goldberg M (2000) A review of radiation proctitis in the treatment of prostate cancer. J Wound Ostomy Cont Nurs 27(3):179–187

    CAS  Google Scholar 

  38. Babb RR (1996) Radiation proctitis: a review. Am J Gastroenterol 91(7):1309–1311

    CAS  PubMed  Google Scholar 

  39. Linard C, Busson E, Holler V, Strup-Perrot C, Lacave-Lapalun JV, Lhomme B et al (2013) Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs. Stem Cells Transl Med 2(11):916–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Semont A, Mouiseddine M, Francois A, Demarquay C, Mathieu N, Chapel A et al (2010) Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 17(6):952–961

    Article  CAS  PubMed  Google Scholar 

  41. Kamprom W, Kheolamai P, UP Y, Supokawej A, Wattanapanitch M, Laowtammathron C et al (2016) Effects of mesenchymal stem cell-derived cytokines on the functional properties of endothelial progenitor cells. Eur J Cell Biol. 95(3–5):153–163

    Article  CAS  PubMed  Google Scholar 

  42. Bhanja P, Saha S, Kabarriti R, Liu L, Roy-Chowdhury N, Roy-Chowdhury J et al (2009) Protective role of R-spondin1, an intestinal stem cell growth factor, against radiation-induced gastrointestinal syndrome in mice. PLoS One 4(11):e8014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL et al (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58(5):933–939

    CAS  PubMed  Google Scholar 

  44. Lee JW, Fang X, Krasnodembskaya A, Howard JP, Matthay MA (2011) Concise review: mesenchymal stem cells for acute lung injury: role of paracrine soluble factors. Stem Cells 29(6):913–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chang YH, Lin LM, Lou CW, Chou CK, Ch’ang HJ (2012) Bone marrow transplantation rescues intestinal mucosa after whole body radiation via paracrine mechanisms. Radiother Oncol 105(3):371–377

    Article  CAS  PubMed  Google Scholar 

  46. Conese M, Carbone A, Castellani S, Di Gioia S (2013) Paracrine effects and heterogeneity of marrow-derived stem/progenitor cells: relevance for the treatment of respiratory diseases. Cells Tissues Organs 197(6):445–473

    Article  CAS  PubMed  Google Scholar 

  47. • Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111(9):4551-8. This study demonstrated that BM-MSC can directly influence stabilization of endothelial cells by functioning as perivascular precursor cells.

  48. Ranganath SH, Levy O, Inamdar MS, Karp JM (2012) Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 10(3):244–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bessout R, Semont A, Demarquay C, Charcosset A, Benderitter M, Mathieu N (2014) Mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and suppresses radiation-activated T cells: new insights into MSC immunomodulation. Mucosal Immunol 7(3):656–669

    Article  CAS  PubMed  Google Scholar 

  50. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN et al (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3 K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  51. Khan SM, Bennett JP Jr (2004) Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr 36(4):387–393

    Article  CAS  PubMed  Google Scholar 

  52. Agrawal A, Mabalirajan U (2016) Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Lung Cell Mol Physiol 310(2):L103–L113

    Article  PubMed  Google Scholar 

  53. Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL et al (2014) Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 53:141–146

    Article  CAS  PubMed  Google Scholar 

  54. Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K et al (2012) Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 18(5):759–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant U19 AI091175 and U01DK103155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Guha.

Ethics declarations

Conflict of Interest

Shilpa Kulkarni, Timothy Wang, and Chandan Guha declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Tissue Pathobiology: Stem Cells, Reprogramming, Regenerative Medicine, Tissue Engineering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S., Wang, T.C. & Guha, C. Stromal Progenitor Cells in Mitigation of Non-hematopoietic Radiation Injuries. Curr Pathobiol Rep 4, 221–230 (2016). https://doi.org/10.1007/s40139-016-0114-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-016-0114-6

Keywords

Navigation