Skip to main content

Advertisement

Log in

Telomere and Telomerase in Carcinogenesis: Their Role as Prognostic Biomarkers

  • Cancer Biology (Francesco Curcio, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Unlimited replicative potential is the hallmark of cancer cells. Telomere shortening, which occurs at each cell division, restricts cell proliferation in normal somatic cells. Maintenance of telomere length, required for the unlimited cell proliferation displayed by cancer cells, is provided by telomerase activity, expressed in the vast majority of tumors. Telomere/telomerase interplay has a critical role in tumor initiation and progression. Many tumor-based studies have demonstrated that neoplastic cells generally have shorter telomeres than their adjacent non-cancerous mucosa, strongly supporting the concept that telomere erosion is a critical event in carcinogenesis. Telomerase reverse transcriptase (TERT), the catalytic component of the telomerase complex, is usually absent in normal somatic cells but is expressed at variable levels in tumors. Specific mutations in its promoter may influence TERT levels. A body of data indicates that telomere length and levels of TERT/telomerase activity may be prognostic markers in cancers. Circulating cell-free TERT RNA may also be a promising marker for minimally invasive monitoring of disease progression and response to therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138. This commentary focuses on the state-of-art in telomere and telomerase in cancer and aging. All three authors received the Nobel Prize in 2009

  2. Hackett JA, Greider CW (2002) Balancing instability: dual roles for telomerase and telomere dysfunction in tumorigenesis. Oncogene 21:619–626

    Article  CAS  PubMed  Google Scholar 

  3. Dolcetti R, De Rossi A (2012) Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev 32:233–253

    Article  CAS  PubMed  Google Scholar 

  4. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  CAS  PubMed  Google Scholar 

  5. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  CAS  PubMed  Google Scholar 

  6. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    Article  CAS  PubMed  Google Scholar 

  7. Campisi J, Yaswen P (2009) Aging and cancer cell biology. Aging Cell 8:221–225

    Article  CAS  PubMed  Google Scholar 

  8. Michaloglou C, Vredeveld LC, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura TM, Morin GB, Chapman KB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  11. Van Doorslaer K, Burk RD (2012) Association between hTERT activation by HPV E6 proteins and oncogenic risk. Virology 433:216–219

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ding L, Li L, Yang J et al (2007) Latent membrane protein 1 encoded by Epstein-Barr virus induces telomerase activity via p16INK4A/Rb/E2F1 and JNK signaling pathways. J Med Virol 79:1153–1163

    Article  CAS  PubMed  Google Scholar 

  13. Terrin L, Dal Col J, Rampazzo E et al (2008) Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J Virol 82:10175–10187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Xu L, Li S, Stohr B (2013) The role of telomere biology in cancer. Annu Rev Pathol 8:49–78

    Article  CAS  PubMed  Google Scholar 

  15. Mukherjee S, Firpo EJ, Wang Y, Roberts JM (2011) Separation of telomerase functions by reverse genetics. Proc Natl Acad Sci USA 108:E1363–E1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tátrai P, Szepesi Á, Matula Z et al (2012) Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem Biophys Res Commun 422:28–35

    Article  PubMed  Google Scholar 

  17. Chen PC, Peng JR, Huang L et al (2013) Overexpression of human telomerase reverse transcriptase promotes the motility and invasiveness of HepG2 cells in vitro. Oncol Rep 30:1157–1164

    CAS  PubMed  Google Scholar 

  18. Indran IR, Hande MP, Pervaiz S (2011) hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res 71:266–276

    Article  CAS  PubMed  Google Scholar 

  19. Liu Z, Li Q, Li K et al (2013) Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene 32:4203–4213

    Article  CAS  PubMed  Google Scholar 

  20. Paranjape AN, Mandal T, Mukherjee G et al (2012) Introduction of SV40ER and hTERT into mammospheres generates breast cancer cells with stem cell properties. Oncogene 31:1896–1909

    Article  CAS  PubMed  Google Scholar 

  21. Giunco S, Dolcetti R, Keppel S et al (2013) hTERT inhibition triggers Epstein-Barr virus lytic cycle and apoptosis in immortalized and transformed B cells: a basis for new therapies. Clin Cancer Res 19:2036–2047

    Article  CAS  PubMed  Google Scholar 

  22. Giunco S, Celeghin A, Gianesin K et al (2015) Cross talk between EBV and telomerase: the role of TERT and NOTCH2 in the switch of latent/lytic cycle of the virus. Cell Death Dis 6:e1774

    Article  CAS  PubMed  Google Scholar 

  23. Vera E, Blasco MA (2012) Beyond average: potential for measurements of short telomeres. Aging 4:379–392

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Cawthon RM (2009) Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 37:e21

    Article  PubMed Central  PubMed  Google Scholar 

  25. Rampazzo E, Bertorelle R, Serra L et al (2010) Relationship between telomere shortening, genetic instability, and site of tumor origin in colorectal cancer. Br J Cancer 102:1300–1305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bertorelle R, Rampazzo E, Pucciarelli S et al (2014) Telomeres, telomerase and colorectal cancer. World J Gastroenterol 20:1940–1950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Feng TB, Cai LM, Qian KQ, Qi CJ (2012) Reduced telomere length in colorectal carcinomas. Asian Pac J Cancer Prev 13:443–446

    Article  PubMed  Google Scholar 

  28. Roger L, Jones RE, Heppel NH et al (2013) Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. J Natl Cancer Inst 105:1202–1211

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka H, Beam MJ, Caruana K (2014) The presence of telomere fusion in sporadic colon cancer independently of disease stage, TP53/KRAS mutation status, mean telomere length, and telomerase activity. Neoplasia 16:814–823

    Article  PubMed Central  PubMed  Google Scholar 

  30. Valls-Bautista C, Piñol-Felis C, Reñé-Espinet JM et al (2015) In colon cancer, normal colon tissue and blood cells have altered telomere lengths. J Surg Oncol 111:899–904

    Article  CAS  PubMed  Google Scholar 

  31. Cardin R, Piciocchi M, Sinigaglia A et al (2012) Oxidative DNA damage correlates with cell immortalization and mir-92 expression in hepatocellular carcinoma. BMC Cancer 12:177

    Article  CAS  PubMed  Google Scholar 

  32. Tu L, Huda N, Grimes BR et al (2015) Widespread telomere instability in prostatic lesions. Mol Carcinog. doi:10.1002/mc.22326

    Google Scholar 

  33. Aida J, Kobayashi T, Saku T et al (2012) Short telomeres in an oral precancerous lesion: Q-FISH analysis of leukoplakia. J Oral Pathol Med 41:372–378

    Article  PubMed  Google Scholar 

  34. Pascua I, Fernández-Marcelo T, Sánchez-Pernaute A et al (2015) Prognostic value of telomere function in gastric cancers with and without microsatellite instability. Eur J Gastroenterol Hepatol 27:162–169

    Article  CAS  PubMed  Google Scholar 

  35. Mu Y, Zhang Q, Mei L et al (2012) Telomere shortening occurs early during gastrocarcinogenesis. Med Oncol 29:893–898

    Article  CAS  PubMed  Google Scholar 

  36. • Boscolo-Rizzo P, Rampazzo E, Perissinotto E et al (2015) Telomere shortening in mucosa surrounding the tumor: biosensor of field cancerization and prognostic marker of mucosal failure in head and neck squamous cell carcinoma. Oral Oncol 51:500–507. This study shows that in head and neck squamous cell carcinoma, short telomeres in tumors surrounding mucosa are highly significant prognostic markers of mucosal failure, whereas high levels of TERT transcripts in cancer tissues are predictive of regional and distant spread of the disease

  37. Zhou X, Meeker AK, Makambi KH et al (2012) Telomere length variation in normal epithelial cells adjacent to tumor: potential biomarker for breast cancer local recurrence. Carcinogenesis 33:113–118

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mzahma R, Kharrat M, Fetiriche F et al (2015) The relationship between telomere length and clinicopathologic characteristics in colorectal cancers among Tunisian patients. Tumour Biol. doi:10.1007/s13277-015-3545-5

    PubMed  Google Scholar 

  39. Simpson K, Jones RE, Grimstead JW et al (2015) Telomere fusion threshold identifies a poor prognostic subset of breast cancer patients. Mol Oncol 9:1186–1193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Jeon HS, Choi YY, Choi JE et al (2014) Telomere length of tumor tissues and survival in patients with early stage non-small cell lung cancer. Mol Carcinog 53:272–279

    Article  CAS  PubMed  Google Scholar 

  41. Heaphy CM, Yoon GS, Peskoe SB et al (2013) Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov 3:1130–1141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Zhang DH, Chen JY, Hong CQ et al (2014) High-risk human papillomavirus infection associated with telomere elongation in patients with esophageal squamous cell carcinoma with poor prognosis. Cancer 120:2673–2683

    Article  CAS  PubMed  Google Scholar 

  43. • Rampazzo E, Bonaldi L, Trentin L et al (2012) Telomere length and telomerase levels delineate subgroups of B-cell chronic lymphocytic leukemia with different biological characteristics and clinical outcomes. Haematologica 97:56–63. This is one of the first studies which analysed both telomere and telomerase in the same cohort of BCLL cases. The telomere/telomerase profile may be particularly useful in refining the prognosis of CLL patients with no high-risk characteristics (IGVH mutational status and chromosomal aberrations)

  44. Mansouri L, Grabowski P, Degerman S et al (2013) Short telomere length is associated with NOTCH1/SF3B1/TP53 aberrations and poor outcome in newly diagnosed chronic lymphocytic leukemia patients. Am J Hematol 88:647–651

    Article  CAS  PubMed  Google Scholar 

  45. Hoxha M, Fabris S, Agnelli L et al (2014) Relevance of telomere/telomerase system impairment in early stage chronic lymphocytic leukemia. Genes Chromosomes Cancer 53:612–621

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Chen X, Li L et al (2015) The association between telomere length and cancer prognosis: evidence from a meta-analysis. PLoS One 10:e0133174

    Article  PubMed Central  PubMed  Google Scholar 

  47. Falci C, Gianesin K, Sergi G et al (2013) Immune senescence and cancer in elderly patients: results from an exploratory study. Exp Gerontol 48:1436–1442

    Article  CAS  PubMed  Google Scholar 

  48. Qu F, Li R, He X et al (2015) Short telomere length in peripheral blood leukocyte predicts poor prognosis and indicates an immunosuppressive phenotype in gastric cancer patients. Mol Oncol 9:727–739

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Qu F, He X et al (2014) Short leukocyte telomere length predicts poor prognosis and indicates altered immune functions in colorectal cancer patients. Ann Oncol 25:869–876

    Article  CAS  PubMed  Google Scholar 

  50. Liu HQ, An JZ, Liu J et al (2012) Leukocyte telomere length predicts overall survival in hepatocellular carcinoma treated with transarterial chemoembolization. Carcinogenesis 33:1040–1045

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, Wu Y, Huang X et al (2015) Leukocyte telomere length: a novel biomarker to predict the prognosis of glioma patients. J Cancer Res Clin Oncol 141:1739–1747

    Article  CAS  PubMed  Google Scholar 

  52. Russo A, Modica F, Guarrera S et al (2014) Shorter leukocyte telomere length is independently associated with poor survival in patients with bladder cancer. Cancer Epidemiol Biomarkers Prev 23:2439–2446

    Article  CAS  PubMed  Google Scholar 

  53. Kotsopoulos J, Prescott J, De Vivo I et al (2014) Telomere length and mortality following a diagnosis of ovarian cancer. Cancer Epidemiol Biomarkers Prev 23:2603–2606

    Article  PubMed Central  PubMed  Google Scholar 

  54. Qin Q, Sun J, Yin J et al (2014) Telomere length in peripheral blood leukocytes is associated with risk of colorectal cancer in Chinese population. PLoS One 9:e88135

    Article  PubMed Central  PubMed  Google Scholar 

  55. Boardman LA, Litzelman K, Seo S et al (2014) The association of telomere length with colorectal cancer differs by the age of cancer onset. Clin Transl Gastroenterol 5:e52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Cui Y, Cai Q, Qu S et al (2012) Association of leukocyte telomere length with colorectal cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Cancer Epidemiol Biomarkers Prev 21:1807–1813

    Article  PubMed Central  PubMed  Google Scholar 

  57. Hurwitz LM, Heaphy CM, Joshu CE et al (2014) Telomere length as a risk factor for hereditary prostate cancer. Prostate 74:359–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Yu Q, Yang J, Liu B et al (2014) Combined effects of leukocyte telomere length, p53 polymorphism and human papillomavirus infection on esophageal squamous cell carcinoma in a Han Chinese population. Cancer Epidemiol 38:569–575

    Article  PubMed  Google Scholar 

  59. Sanchez-Espiridion B, Chen M, Chang JY et al (2014) Telomere length in peripheral blood leukocytes and lung cancer risk: a large case-control study in Caucasians. Cancer Res 74:2476–2486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bau DT, Lippman SM, Xu E et al (2013) Short telomere lengths in peripheral blood leukocytes are associated with an increased risk of oral premalignant lesion and oral squamous cell carcinoma. Cancer 119:4277–4283

    Article  PubMed  Google Scholar 

  61. Zhang Y, Sturgis EM, Dahlstrom KR et al (2013) Telomere length in peripheral blood lymphocytes contributes to the development of HPV-associated oropharyngeal carcinoma. Cancer Res 73:5996–6003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Martinez-Delgado B, Yanowsky K, Inglada-Perez L et al (2012) Shorter telomere length is associated with increased ovarian cancer risk in both familial and sporadic cases. J Med Genet 49:341–344

    Article  PubMed  Google Scholar 

  63. Lan Q, Cawthon R, Gao Y et al (2013) Longer telomere length in peripheral white blood cells is associated with risk of lung cancer and the rs2736100 (CLPTM1L-TERT) polymorphism in a prospective cohort study among women in China. PLoS One 8:e59230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Xie H, Wu X, Wang S et al (2013) Long telomeres in peripheral blood leukocytes are associated with an increased risk of soft tissue sarcoma. Cancer 119:1885–1891

    Article  CAS  PubMed  Google Scholar 

  65. Wang S, Chen Y, Qu F et al (2014) Association between leukocyte telomere length and glioma risk: a case-control study. Neuro Oncol 16:505–512

    Article  PubMed Central  PubMed  Google Scholar 

  66. Skinner HG, Gangnon RE, Litzelman K et al (2012) Telomere length and pancreatic cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 21:2095–2100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Qu S, Wen W, Shu XO et al (2013) Association of leukocyte telomere length with breast cancer risk: nested case-control findings from the Shanghai Women’s Health Study. Am J Epidemiol 177:617–624

    Article  PubMed Central  PubMed  Google Scholar 

  68. Bojesen SE, Pooley KA, Johnatty SE et al (2013) Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 45:371–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Killick E, Tymrakiewicz M, Cieza-Borrella C et al (2014) Telomere length shows no association with BRCA1 and BRCA2 mutation status. PLoS One 9:e86659

    Article  PubMed Central  PubMed  Google Scholar 

  70. Terry KL, Tworoger SS, Vitonis AF et al (2012) Telomere length and genetic variation in telomere maintenance genes in relation to ovarian cancer risk. Cancer Epidemiol Biomarkers Prev 21:504–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Anic GM, Sondak VK, Messina JL et al (2013) Telomere length and risk of melanoma, squamous cell carcinoma, and basal cell carcinoma. Cancer Epidemiol 37:434–439

    Article  PubMed Central  PubMed  Google Scholar 

  72. Llorca-Cardeñosa MJ, Peña-Chilet M, Mayor M et al (2014) Long telomere length and a TERT-CLPTM1 locus polymorphism association with melanoma risk. Eur J Cancer 50:3168–3177

    Article  PubMed  Google Scholar 

  73. •• Rode L, Nordestgaard BG, Bojesen SE (2015) Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst 107:djv074. This study demonstrated that short telomeres in peripheral blood leukocytes are associated with high cancer mortality in association analysis. In contrast, genetically determined long telomeres may represent a survival advantage for cancer cells, allowing multiple cell divisions, leading to high cancer mortality

  74. Zhou X, Xing D (2012) Assays for human telomerase activity: progress and prospects. Chem Soc Rev 41:4643–4656

    Article  CAS  PubMed  Google Scholar 

  75. Deblakshmi RK, Deka M, Saikia AK et al (2015) Prognostic relevance of human telomerase reverse transcriptase (hTERT) expression in patients with gall bladder disease and carcinoma. Asian Pac J Cancer Prev 16:2923–2928

    Article  PubMed  Google Scholar 

  76. Wang N, Xu D, Sofiadis A et al (2014) Telomerase-dependent and independent telomere maintenance and its clinical implications in medullary thyroid carcinoma. J Clin Endocrinol Metab 99:E1571–E1579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Bertorelle R, Briarava M, Rampazzo E et al (2013) Telomerase is an independent prognostic marker of overall survival in patients with colorectal cancer. Br J Cancer 108:278–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Sakabe R, Murakami Y, Uemura K et al (2012) Prognostic significance of telomerase activity and human telomerase reverse transcriptase expression in ampullary carcinoma. Ann Surg Oncol 19:3072–3080

    Article  PubMed  Google Scholar 

  79. Aras G, Kanmaz D, Urer N et al (2013) Immunohistochemical expression of telomerase in patients with non-small cell lung cancer: prediction of metastasis and prognostic significance. Anticancer Res 33:2643–2650

    CAS  PubMed  Google Scholar 

  80. • Terrin L, Rampazzo E, Pucciarelli S et al (2008) Relationship between tumor and plasma levels of hTERT mRNA in patients with colorectal cancer: implications for monitoring of neoplastic disease. Clin Cancer Res 14:7444–7451. This study was one of the first to indicate that quantification of hTERT mRNA in plasma may be a minimally-invasive tool for monitoring solid tumors

  81. Kang Y, Zhang J, Sun P, Shang J (2013) Circulating cell-free human telomerase reverse transcriptase mRNA in plasma and its potential diagnostic and prognostic value for gastric cancer. Int J Clin Oncol 18:478–486

    Article  CAS  PubMed  Google Scholar 

  82. March-Villalba JA, Martínez-Jabaloyas JM, Herrero MJ et al (2012) Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One 7:e43470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Pucciarelli S, Rampazzo E, Briarava M et al (2012) Telomere-specific reverse transcriptase (hTERT) and cell-free RNA in plasma as predictors of pathologic tumor response in rectal cancer patients receiving neoadjuvant chemoradiotherapy. Ann Surg Oncol 19:3089–3096

    Article  PubMed  Google Scholar 

  84. Wang HY, Ahn S, Kim S et al (2014) Detection of circulating tumor cells in patients with breast cancer using the quantitative RT-PCR assay for monitoring of therapy efficacy. Exp Mol Pathol 97:445–452

    Article  CAS  PubMed  Google Scholar 

  85. Leotsakos I, Dimopoulos P, Gkioka E et al (2014) Detection of circulating tumor cells in bladder cancer using multiplex PCR assays. Anticancer Res 34:7415–7424

    CAS  PubMed  Google Scholar 

  86. Baird DM (2010) Variation at the TERT locus and predisposition for cancer. Expert Rev Mol Med 12:e16

    Article  PubMed  Google Scholar 

  87. Mocellin S, Verdi D, Pooley KA et al (2012) Telomerase reverse transcriptase locus polymorphisms and cancer risk: a field synopsis and meta-analysis. J Natl Cancer Inst 104:840–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Vinagre J, Pinto V, Celestino R et al (2014) Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch 465:119–133

    Article  CAS  PubMed  Google Scholar 

  89. Lee S, Barnhill RL, Dummer R et al (2015) TERT promoter mutations are predictive of aggressive clinical behavior in patients with spitzoid melanocytic neoplasms. Sci Rep 5:11200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Griewank KG, Murali R, Puig-Butille JA et al (2014) TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst 106:dju246

    Article  PubMed Central  PubMed  Google Scholar 

  91. Labussière M, Di Stefano AL, Gleize V et al (2014) TERT promoter mutations in gliomas, genetic associations and clinico-pathological correlations. Br J Cancer 111:2024–2032

    Article  PubMed Central  PubMed  Google Scholar 

  92. Nonoguchi N, Ohta T, Oh JE et al (2013) TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol 126:931–937

    Article  CAS  PubMed  Google Scholar 

  93. Park CK, Lee SH, Kim JY et al (2014) Expression level of hTERT is regulated by somatic mutation and common single nucleotide polymorphism at promoter region in glioblastoma. Oncotarget 5:3399–3407

    Article  PubMed Central  PubMed  Google Scholar 

  94. Simon M, Hosen I, Gousias K et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17:45–52

    Article  PubMed  Google Scholar 

  95. Spiegl-Kreinecker S, Lötsch D, Ghanim B et al (2015) Prognostic quality of activating TERT promoter mutations in glioblastoma: interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro Oncol 17:1231–1240

    PubMed  Google Scholar 

  96. Melo M, da Rocha AG, Vinagre J et al (2014) TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 99:E754–E765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Wang N, Liu T, Sofiadis A et al (2014) TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA. Cancer 120:2965–2979

    Article  CAS  PubMed  Google Scholar 

  98. Xing M, Liu R, Liu X et al (2014) BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 32:2718–2726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Huang HN, Chiang YC, Cheng WF et al (2015) Molecular alterations in endometrial and ovarian clear cell carcinomas: clinical impacts of telomerase reverse transcriptase promoter mutation. Mod Pathol 28:303–311

    Article  CAS  PubMed  Google Scholar 

  100. Remke M, Ramaswamy V, Peacock J et al (2013) TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol 126:917–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Rachakonda PS, Hosen I, de Verdier PJ et al (2013) TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci USA 110:17426–17431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by AIRC, Grant N IG-14258, and Ricerca Finalizzata No. RF-2011-02349645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita De Rossi.

Additional information

Silvia Giunco and Enrica Rampazzo have equally contributed to the work.

This article is part of the Topical Collection on Cancer Biology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giunco, S., Rampazzo, E., Celeghin, A. et al. Telomere and Telomerase in Carcinogenesis: Their Role as Prognostic Biomarkers. Curr Pathobiol Rep 3, 315–328 (2015). https://doi.org/10.1007/s40139-015-0087-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0087-x

Keywords

Navigation