Skip to main content
Log in

Current Translational Challenges for Tissue Engineering: 3D Culture, Nanotechnology, and Decellularized Matrices

  • Stem Cells and Regeneration (Udayan Apte, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Tissue engineering and regenerative medicine aim to alleviate the gaps in clinical treatment options for addressing critical defect disorders otherwise left untreated. Ongoing attempts to translate research findings to clinical applications have progressed slower than expected but continue to evolve within the three key areas of cells, signals, and scaffolds. Within these areas, approaches have developed that are evolving our clinical options for addressing disorders as well as improving high-throughout screening techniques to optimize our therapeutic options in tomorrow’s clinic. Such approaches include, but are not limited to, selecting the proper cell sources, engineering artificial and natural biomaterial substrates, bioprinting, microfluidic platforms, and whole organ matrices. Here we review recent advancements in these areas as to better understand where the field is headed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Bae H, Puranik AS, Gauvin R, Edalat F, Carrillo-Conde B, Peppas NA et al (2012) Building vascular networks. Sci Transl Med 4(160):160ps23

    Article  PubMed Central  PubMed  Google Scholar 

  2. Dhawan A, Puppi J, Hughes RD, Mitry RR (2010) Human hepatocyte transplantation: current experience and future challenges. Nat Rev Gastroenterol Hepatol 7(5):288–298

    Article  PubMed  Google Scholar 

  3. Bhatia SN, Underhill GH, Zaret KS, Fox IJ (2014) Cell and tissue engineering for liver disease. Sci Transl Med 6(245):245sr2

    Article  PubMed  Google Scholar 

  4. Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 20(69):254–269

    Article  Google Scholar 

  5. Boyd NL, Nunes SS, Jokinen JD, Krishnan L, Chen YL, Smith KH et al (2011) Microvascular mural cell functionality of human embryonic stem cell-derived mesenchymal cells. Tissue Eng A 17(11–12):1537–1548

    Article  CAS  Google Scholar 

  6. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patients bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211(1):27–35

    Article  CAS  PubMed  Google Scholar 

  7. Uccelli A, Benvenuto F, Laroni A, Giunti D (2011) Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24(1):59–64

    Article  CAS  PubMed  Google Scholar 

  8. Stroncek JD, Xue YJ, Haque N, Lawson JH, Reichert WM (2011) In vitro functional testing of endothelial progenitor cells that overexpress thrombomodulin. Tissue Eng A 17(15–16):2091–2100

    Article  CAS  Google Scholar 

  9. Basma H, Soto-Gutierrez A, Yannam GR, Liu LP, Ito R, Yamamoto T et al (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136(3):990–999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Si-Tayeb K, Noto FK, Nagaoka M, Li JX, Battle MA, Duris C et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51(1):297–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM et al (2010) Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51(1):329–335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Soto-Gutierrez A, Kobayashi N, Rivas-Carrillo JD, Navarro-Alvarez N, Zhao DB, Okitsu T et al (2006) Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nat Biotechnol 24(11):1412–1419

    Article  CAS  PubMed  Google Scholar 

  13. Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN (2011) Humanized mice with ectopic artificial liver tissues. Proc Natl Acad Sci USA 108(29):11842–11847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Komori J, Boone L, DeWard A, Hoppo T, Lagasse E (2012) The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat Biotechnol 30(10):976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30(6):350–359

    Article  CAS  PubMed  Google Scholar 

  16. Sharma S, Raju R, Sui SG, Hu WS (2011) Stem cell culture engineering—process scale up and beyond. Biotechnol J 6(11):1317–1329

    Article  CAS  PubMed  Google Scholar 

  17. •• Shupe TD, Piscaglia AC, Oh SH, Gasbarrini A, Petersen BE (2009) Isolation and characterization of hepatic stem cells, or “oval cells,” from rat livers. Methods Mol Biol 482:387–405. Extremely useful methods for the isolation of primary hepatic cell types for regeneration studies. Specific details on enzymatic and physical selections to generate applicable cell types

  18. Cho CH, Berthiaume F, Tilles AW, Yarmush ML (2008) A new technique for primary hepatocyte expansion in vitro. Biotechnol Bioeng 101(2):345–356

    Article  CAS  PubMed  Google Scholar 

  19. Ding QR, Lee YK, Schaefer EAK, Peters DT, Veres A, Kim K et al (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12(2):238–251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103(4):655–663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Article  CAS  PubMed  Google Scholar 

  22. Dunn JCY, Tompkins RG, Yarmush ML (1992) Hepatocytes in collagen sandwich—evidence for transcriptional and translational regulation. J Cell Biol 116(4):1043–1053

    Article  CAS  PubMed  Google Scholar 

  23. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  PubMed  Google Scholar 

  24. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54(1):3–12

    Article  CAS  PubMed  Google Scholar 

  25. DeQuach JA, Yuan SH, Goldstein LS, Christman KL (2011) Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng A 17(21–22):2583–2592

    Article  CAS  Google Scholar 

  26. Silva MMCG, Cyster LA, Barry JJA, Yang XB, Oreffo ROC, Grant DM et al (2006) The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds. Biomaterials 27(35):5909–5917

    Article  CAS  PubMed  Google Scholar 

  27. Rose FR, Cyster LA, Grant DM, Scotchford CA, Howdle SM, Shakesheff KM (2004) In vitro assessment of cell penetration into porous hydroxyapatite scaffolds with a central aligned channel. Biomaterials 25(24):5507–5514

    Article  CAS  PubMed  Google Scholar 

  28. Guarino V, Ambrosio L (2010) Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering. Proc Inst Mech Eng H. 224(H12):1389–1400

    Article  CAS  PubMed  Google Scholar 

  29. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33(21):5230–5246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Ding FY, Deng HB, Du YM, Shi XW, Wang Q (2014) Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale 6(16):9477–9493

    Article  CAS  PubMed  Google Scholar 

  31. Hahn MS, Taite LJ, Moon JJ, Rowland MC, Ruffino KA, West JL (2006) Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27(12):2519–2524

    Article  CAS  PubMed  Google Scholar 

  32. Du YA, Ghodousi M, Qi H, Haas N, Xiao WQ, Khademhosseini A (2011) Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng 108(7):1693–1703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Moon JJ, Hahn MS, Kim I, Nsiah BA, West JL (2009) Micropatterning of poly(ethylene glycol) diacrylate hydrogels with biomolecules to regulate and guide endothelial morphogenesis. Tissue Eng A 15(3):579–585

    Article  CAS  Google Scholar 

  34. Jiang B, Waller TM, Larson JC, Appel AA, Brey EM (2013) Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation. Tissue Eng A 19(1–2):224–234

    Article  CAS  Google Scholar 

  35. Tilkorn DJ, Bedogni A, Keramidaris E, Han XL, Palmer JA, Dingle AM et al (2010) Implanted myoblast survival is dependent on the degree of vascularization in a novel delayed implantation/prevascularization tissue engineering model. Tissue Eng A. 16(1):165–178

    Article  CAS  Google Scholar 

  36. Underhill GH, Chen AA, Albrecht DR, Bhatia SN (2007) Assessment of hepatocellular function within PEG hydrogels. Biomaterials 28(2):256–270

    Article  CAS  PubMed  Google Scholar 

  37. Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou YR, Yliperttula ML et al (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35(19):5110–5121

    Article  CAS  PubMed  Google Scholar 

  38. Nagamoto Y, Tashiro K, Takayama K, Ohashi K, Kawabata K, Sakurai F et al (2012) The promotion of hepatic maturation of human pluripotent stem cells in 3D co-culture using type I collagen and Swiss 3T3 cell sheets. Biomaterials 33(18):4526–4534

    Article  CAS  PubMed  Google Scholar 

  39. Bettahalli NMS, Vicente J, Moroni L, Higuera GA, van Blitterswijk CA, Wessling M et al (2011) Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs. Acta Biomater 7(9):3312–3324

    Article  CAS  PubMed  Google Scholar 

  40. Edwards SL, Church JS, Alexander DLJ, Russell SJ, Ingham E, Ramshaw JAM et al (2011) Modeling tissue growth within nonwoven scaffolds pores. Tissue Eng C 17(2):123–130

    Article  CAS  Google Scholar 

  41. Tuin SA, Pourdeyhimi B, Loboa EG (2014) Interconnected, microporous hollow fibers for tissue engineering: commercially relevant, industry standard scale-up manufacturing. J Biomed Mater Res A 102(9):3311–3323

    Article  PubMed  Google Scholar 

  42. Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold. Biotechnol Bioeng 96(1):177–187

    Article  CAS  PubMed  Google Scholar 

  43. Unger RE, Huang Q, Peters K, Protzer D, Paul D, Kirkpatrick CJ (2005) Growth of human cells on polyethersulfone (PES) hollow fiber membranes. Biomaterials 26(14):1877–1884

    Article  CAS  PubMed  Google Scholar 

  44. Smith CM, Christian JJ, Warren WL, Williams SK (2007) Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng 13(2):373–383

    Article  CAS  PubMed  Google Scholar 

  45. •• Skardal A, Zhang J, McCoard L, Xu X, Oottamasathien S, Prestwich GD (2010) Photocrosslinkable hyaluronan-gelatin hydrogels for two-step bioprinting. Tissue Eng A 16(8):2675–2685. Very useful technology for clinical application of cell types in a favorable environment. Likely immediate solution for implantation

  46. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells 26(1):127–134

    Article  CAS  PubMed  Google Scholar 

  48. Xu T, Jin J, Gregory C, Hickman JJ, Boland T (2005) Inkjet printing of viable mammalian cells. Biomaterials 26(1):93–99

    Article  PubMed  Google Scholar 

  49. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    CAS  PubMed  Google Scholar 

  50. Choi NW, Cabodi M, Held B, Gleghorn JP, Bonassar LJ, Stroock AD (2007) Microfluidic scaffolds for tissue engineering. Nature Mater 6(11):908–915

    Article  CAS  Google Scholar 

  51. •• Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen DHT, Cohen DM et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774. Extremely promising technology that provides a platform for immediate perfusion studies of various geometries. Provides an avenue for utilizing natural matrix materials around a vascular network besides whole organ decellularization

  52. Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B, Solorzano RD et al (2013) Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci USA 110(19):7586–7591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gieni RS, Hendzel MJ (2008) Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem 104(6):1964–1987

    Article  CAS  PubMed  Google Scholar 

  54. Davies PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiol 6(1):16–26

    Article  CAS  Google Scholar 

  55. Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F et al (2011) Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32(30):7389–7402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Luque T, Melo E, Garreta E, Cortiella J, Nichols J, Farre R et al (2013) Local micromechanical properties of decellularized lung scaffolds measured with atomic force microscopy. Acta Biomater 9(6):6852–6859

    Article  CAS  PubMed  Google Scholar 

  57. Suki B (2014) Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J Cell Physiol 229(9):1134–1140

    Article  CAS  PubMed  Google Scholar 

  58. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  CAS  PubMed  Google Scholar 

  59. Mosadegh B, Huang C, Park JW, Shin HS, Chung BG, Hwang SK et al (2007) Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels. Langmuir 23(22):10910–10912

    Article  CAS  PubMed  Google Scholar 

  60. Chaw KC, Manimaran M, Tay FEH, Swaminathan S (2007) Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration. Biomed Microdevices 9(4):597–602

    Article  CAS  PubMed  Google Scholar 

  61. Gu W, Zhu XY, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci USA 101(45):15861–15866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    Article  CAS  PubMed  Google Scholar 

  63. Huang CP, Lu J, Seon H, Lee AP, Flanagan LA, Kim HY et al (2009) Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab Chip 9(12):1740–1748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang YS et al (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35(26):7308–7325

    Article  CAS  PubMed  Google Scholar 

  65. Vickerman V, Blundo J, Chung S, Kamm R (2008) Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8(9):1468–1477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Song JW, Bazou D, Munn LL (2012) Anastomosis of endothelial sprouts forms new vessels in a tissue analogue of angiogenesis. Integr Biol 4(8):857–862

    Article  CAS  Google Scholar 

  67. Williamson A, Singh S, Fernekorn U, Schober A (2013) The future of the patient-specific body-on-a-chip. Lab Chip 13(18):3471–3480

    Article  CAS  PubMed  Google Scholar 

  68. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754

    Article  CAS  PubMed  Google Scholar 

  69. Carraro A, Hsu WM, Kulig KM, Cheung WS, Miller ML, Weinberg EJ et al (2008) In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed Microdevices 10(6):795–805

    Article  PubMed  Google Scholar 

  70. Hsu YH, Moya ML, Hughes CCW, George SC, Lee AP (2013) A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13(15):2990–2998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Shamloo A, Heilshorn SC (2010) Matrix density mediates polarization and lumen formation of endothelial sprouts in VEGF gradients. Lab Chip 10(22):3061–3068

    Article  CAS  PubMed  Google Scholar 

  72. •• Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A et al (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764. One of the few method comparisons of decellularization protocols. Minimizes the use of numerous chemicals to generate a scaffold ready for regeneration and implantation

  73. •• Mirmalek-Sani SH, Sullivan DC, Zimmerman C, Shupe TD, Petersen BE (2013) Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 183(2):558–565. One of the few studies analyzing the impact of allograft and xenograft tissues upon implantation and measurement of immunogencity. Indicates the scalability of protocols for the generation of whole organ scaffolds that are biocompatible

  74. Barakat O, Abbasi S, Rodriguez G, Rios J, Wood RP, Ozaki C et al (2012) Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 173(1):e11–e25

    Article  CAS  PubMed  Google Scholar 

  75. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M et al (2013) Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials 34(22):5488–5495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. • Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933. Offers insight into alternative approaches to decellularization based upon an overall less dense organ within the body. Great background for decellularization

  77. •• Crapo PM, Gilbert TW, Badylak SF (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243. Very useful review of specific decellularization techniques as well as sterilization options. Offers many other great studies to review in order to better understand the complexity of the decellularization process

  78. •• Seif-Naraghi SB, Horn D, Schup-Magoffin PJ, Christman KL (2012) Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater 8(10):3695–3703. Great method for the dissociation of a decellularized matrix into an injectable form for clinical use. Provides further insight into alternative uses of natural matrix proteins

  79. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  80. • Lang R, Stern MM, Smith L, Liu Y, Bharadwaj S, Liu G et al (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32(29):7042–7052. Useful alternative decellularization technique for review of decellularization methods as well as useful measurement protocols. Use of cancer cell lines limits translational aspect

  81. • Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang YY (2012) Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 33(18):4565–4575. Wonderful paper illustrating the regenerative effect of retained factors within decellularized matrices. Useful combination with other biomaterials for a therapeutic effect

  82. Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW et al (2014) Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15(1):206–218

    Article  CAS  PubMed  Google Scholar 

  83. Mekala NK, Baadhe RR, Potumarthi R (2014) Mass transfer aspects of 3D cell cultures in tissue engineering. Asia-Pac J Chem Eng 9(3):318–329

    Article  CAS  Google Scholar 

  84. • Soto-Gutierrez A, Zhang L, Medberry C, Fukumitsu K, Faulk D, Jiang HB et al (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng C 17(6):677–686. Excellent review of different seeding methods. Useful for designing recellularization protocols as well as defining expected results

  85. • Uzarski JS, Scott EW, McFetridge PS (2013) Adaptation of endothelial cells to physiologically-modeled, variable shear stress. PLoS One 8(2):e57004. Excellent use of naturally variable shear protocol to generate a more native endothelial response. Further updates of bioreactor design required for future translation

  86. Liu N, Zang R, Yang ST, Li Y (2014) Stem cell engineering in bioreactors for large-scale bioprocessing. Eng Life Sci 14(1):4–15

    Article  CAS  Google Scholar 

  87. Rodrigues CAV, Fernandes TG, Diogo MM, da Silva CL, Cabral JMS (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29(6):815–829

    Article  CAS  PubMed  Google Scholar 

  88. Gerlach JC, Mutig K, Sauer IM, Schrade P, Efimova E, Mieder T et al (2003) Use of primary human liver cells originating from discarded grafts in a bioreactor for liver support therapy and the prospects of culturing adult liver stem cells in bioreactors: a morphologic study. Transplantation 76(5):781–786

    Article  PubMed  Google Scholar 

  89. Lv G, Zhao L, Zhang A, Du W, Chen Y, Yu C et al (2011) Bioartificial liver system based on choanoid fluidized bed bioreactor improve the survival time of fulminant hepatic failure pigs. Biotechnol Bioeng 108(9):2229–2236

    Article  CAS  PubMed  Google Scholar 

  90. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13(13):27–53

    Article  CAS  PubMed  Google Scholar 

  92. • Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53(2):604–617. Great proof of consent for the utilization of human cells for liver regeneration. Bioreactor design primitive and requires further optimization. Also was not whole organ and conducted on a small animal model

  93. •• Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19(5):646–651. Excellent use of bioreactors and systemic variables to utilize negative pressure as the seeding method. Provides a solid foundation for future research studies utilizing similar principles for an optimally seeded scaffold

  94. Badylak SF (2014) Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42(7):1517–1527

    Article  PubMed  Google Scholar 

  95. Sicari BM, Dziki JL, Siu BF, Medberry CJ, Dearth CL, Badylak SF (2014) The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 35(30):8605–8612

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryon E. Petersen.

Additional information

This article is part of the Topical Collection on Stem Cells and Regeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, D.C., Repper, J.P., Frock, A.W. et al. Current Translational Challenges for Tissue Engineering: 3D Culture, Nanotechnology, and Decellularized Matrices. Curr Pathobiol Rep 3, 99–106 (2015). https://doi.org/10.1007/s40139-015-0066-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-015-0066-2

Keywords

Navigation