Skip to main content

Advertisement

Log in

A Phenotypic Approach for Personalised Management of Obstructive Sleep Apnoea

  • SLEEP MEDICINE: Sleep Apnea (K Pang, Section Editor)
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Obstructive sleep apnoea (OSA) is a common sleep disorder associated with various symptoms and health consequences. In recent years, it has been increasingly recognised that there are different OSA phenotypes relating to risk factors and pathophysiology as well as clinical expression (symptoms and comorbidity). This review provides a narrative of currently investigated OSA phenotypes relating to disease and treatment which could help move the field towards the future vision of personalised management for OSA.

Recent Findings

There is emerging evidenceOSA phenotypes relating to pathophysiology and clinical expression associate with particular consequences, such as cardiovascular risk. The array of current and emerging OSA therapy options (e.g. continuous positive airway pressure, weight loss, positional therapy, oral appliance therapy, surgery, neuromuscular stimulation, pharmaceuticals) have variations in treatment efficacy and usage across individuals. Identification of treatment response phenotypes could impact treatment selection to maximise downstream benefits of therapy..

Summary

A phenotypic approach to matching individuals with OSA to appropriate therapies to mitigate downstream consequences is a framework for personalised management of OSA. Research in this area is ongoing with emergence of potential tools to characterise OSA into anatomical and pathophysiological phenotypes in clinical practice. Enabling technologies and large datasets will aid the advancement towards validated approaches that can be easily applied in the clinical setting, hopefully in the not too distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjafield AV, Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med. 2019;7(8):687–98. https://doi.org/10.1016/S2213-2600(19)30198-5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lim DC, Sutherland K, Cistulli PA, Pack AI. P4 medicine approach to obstructive sleep apnoea. Respirology. 2017;22(5):849–60. https://doi.org/10.1111/resp.13063.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Agusti A. The path to personalised medicine in COPD. Thorax. 2014;69(9):857–64. https://doi.org/10.1136/thoraxjnl-2014-205507.

    Article  PubMed  Google Scholar 

  4. Bostantzoglou C, Delimpoura V, Samitas K, Zervas E, Kanniess F, Gaga M. Clinical asthma phenotypes in the real world: opportunities and challenges. Breathe (Sheff). 2015;11(3):186–93. https://doi.org/10.1183/20734735.008115.

    Article  Google Scholar 

  5. Yates LR, Seoane J, Le Tourneau C, Siu LL, Marais R, Michiels S, et al. The European Society for Medical Oncology (ESMO) Precision Medicine Glossary. Ann Oncol. 2018;29(1):30–5. https://doi.org/10.1093/annonc/mdx707.

    Article  CAS  PubMed  Google Scholar 

  6. Sutherland K, Almeida FR, de Chazal P, Cistulli PA. Prediction in obstructive sleep apnoea: diagnosis, comorbidity risk, and treatment outcomes. Expert Rev Respir Med. 2018;12(4):293–307. https://doi.org/10.1080/17476348.2018.1439743.

    Article  CAS  PubMed  Google Scholar 

  7. Punjabi NM. The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc. 2008;5(2):136–43. https://doi.org/10.1513/pats.200709-155MG.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J. Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA. 2000;284(23):3015–21.

    Article  CAS  Google Scholar 

  9. Isono S. Obesity and obstructive sleep apnoea: mechanisms for increased collapsibility of the passive pharyngeal airway. Respirology. 2012;17(1):32–42. https://doi.org/10.1111/j.1440-1843.2011.02093.x.

    Article  PubMed  Google Scholar 

  10. Kim AM, Keenan BT, Jackson N, Chan EL, Staley B, Poptani H, et al. Tongue fat and its relationship to obstructive sleep apnea. Sleep. 2014;37(10):1639–48. https://doi.org/10.5665/sleep.4072.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schwartz AR, Patil SP, Squier S, Schneider H, Kirkness JP, Smith PL. Obesity and upper airway control during sleep. J Appl Physiol (1985). 2010;108(2):430–5. https://doi.org/10.1152/japplphysiol.00919.2009.

    Article  Google Scholar 

  12. Chi L, Comyn FL, Mitra N, Reilly MP, Wan F, Maislin G, et al. Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. Eur Respir J. 2011;38(2):348–58. https://doi.org/10.1183/09031936.00119210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schwab RJ, Pasirstein M, Pierson R, Mackley A, Hachadoorian R, Arens R, et al. Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med. 2003;168(5):522–30. https://doi.org/10.1164/rccm.200208-866OC.

    Article  PubMed  Google Scholar 

  14. Cairns A, Poulos G, Bogan R. Sex differences in sleep apnea predictors and outcomes from home sleep apnea testing. Nat Sci Sleep. 2016;8:197–205. https://doi.org/10.2147/NSS.S101186.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Simpson L, Mukherjee S, Cooper MN, Ward KL, Lee JD, Fedson AC, et al. Sex differences in the association of regional fat distribution with the severity of obstructive sleep apnea. Sleep. 2010;33(4):467–74.

    Article  Google Scholar 

  16. Sutherland K, Keenan BT, Bittencourt L, Chen NH, Gislason T, Leinwand S, et al. A Global comparison of anatomic risk factors and their relationship to obstructive sleep apnea severity in clinical samples. J Clin Sleep Med. 2019;15(4):629–39. https://doi.org/10.5664/jcsm.7730.

  17. Lee RW, Vasudavan S, Hui DS, Prvan T, Petocz P, Darendeliler MA, et al. Differences in craniofacial structures and obesity in Caucasian and Chinese patients with obstructive sleep apnea. Sleep. 2010;33(8):1075–80.

    Article  Google Scholar 

  18. Tsuiki S, Isono S, Ishikawa T, Yamashiro Y, Tatsumi K, Nishino T. Anatomical balance of the upper airway and obstructive sleep apnea. Anesthesiology. 2008;108(6):1009–15. https://doi.org/10.1097/ALN.0b013e318173f103.

    Article  PubMed  Google Scholar 

  19. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med. 2013;188(8):996–1004. https://doi.org/10.1164/rccm.201303-0448OC.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kasai T, Motwani SS, Elias RM, Gabriel JM, Taranto Montemurro L, Yanagisawa N, et al. Influence of rostral fluid shift on upper airway size and mucosal water content. J Clin Sleep Med. 2014;10(10):1069–74. https://doi.org/10.5664/jcsm.4102.

    Article  PubMed  PubMed Central  Google Scholar 

  21. White LH, Bradley TD. Role of nocturnal rostral fluid shift in the pathogenesis of obstructive and central sleep apnoea. J Physiol. 2013;591(5):1179–93. https://doi.org/10.1113/jphysiol.2012.245159.

    Article  PubMed  Google Scholar 

  22. Keenan BT, Kim J, Singh B, Bittencourt L, Chen NH, Cistulli PA, et al. Recognizable clinical subtypes of obstructive sleep apnea across international sleep centers: a cluster analysis. Sleep. 2018;41(3). https://doi.org/10.1093/sleep/zsx214.

  23. • Peres BU, Hirsch Allen AJ, Fox N, Laher I, Hanly P, Skomro R, et al. Circulating biomarkers to identify cardiometabolic complications in patients with obstructive sleep apnea: a systematic review. Sleep Med Rev. 2019;44:48–57. https://doi.org/10.1016/j.smrv.2018.12.004A systematic review of the current status of circulating biomarkers for identification of cardiometabolic disease riks in OSA, an important area for precision sleep medicine.

    Article  PubMed  Google Scholar 

  24. Baril AA, Carrier J, Lafreniere A, Warby S, Poirier J, Osorio RS, et al. Biomarkers of dementia in obstructive sleep apnea. Sleep Med Rev. 2018;42:139–48. https://doi.org/10.1016/j.smrv.2018.08.001.

    Article  PubMed  Google Scholar 

  25. Zinchuk AV, Jeon S, Koo BB, Yan X, Bravata DM, Qin L, et al. Polysomnographic phenotypes and their cardiovascular implications in obstructive sleep apnoea. Thorax. 2018;73(5):472–80. https://doi.org/10.1136/thoraxjnl-2017-210431.

    Article  PubMed  Google Scholar 

  26. •• Mazzotti DR, Keenan BT, Lim DC, Gottlieb DJ, Kim J, Pack AI. Symptom subtypes of obstructive sleep apnea predict incidence of cardiovascular outcomes. Am J Respir Crit Care Med. 2019;200(4):493–506. https://doi.org/10.1164/rccm.201808-1509OCThis study demonstates a link between sleep apnea symptom profiles and cardiovascular disease, suggesting symptom subtypes indicate susceptibility to future disease risk which may require personalised management approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pengo MF, Soranna D, Giontella A, Perger E, Mattaliano P, Schwarz EI, et al. Obstructive sleep apnoea treatment and blood pressure: which phenotypes predict a response? A systematic review and meta-analysis. Eur Respir J. 2020;55(5). https://doi.org/10.1183/13993003.01945-2019.

  28. Kuhn E, Schwarz EI, Bratton DJ, Rossi VA, Kohler M. Effects of CPAP and mandibular advancement devices on health-related quality of life in OSA: a systematic review and meta-analysis. Chest. 2017;151(4):786–94. https://doi.org/10.1016/j.chest.2017.01.020.

    Article  PubMed  Google Scholar 

  29. Schwartz M, Acosta L, Hung YL, Padilla M, Enciso R. Effects of CPAP and mandibular advancement device treatment in obstructive sleep apnea patients: a systematic review and meta-analysis. Sleep Breath. 2018;22(3):555–68. https://doi.org/10.1007/s11325-017-1590-6.

    Article  PubMed  Google Scholar 

  30. Wang ML, Wang C, Tuo M, Yu Y, Wang L, Yu JT, et al. Cognitive effects of treating obstructive sleep apnea: a meta-analysis of randomized controlled trials. J Alzheimers Dis. 2020;75(3):705–15. https://doi.org/10.3233/JAD-200088.

    Article  PubMed  Google Scholar 

  31. Labarca G, Dreyse J, Drake L, Jorquera J, Barbe F. Efficacy of continuous positive airway pressure (CPAP) in the prevention of cardiovascular events in patients with obstructive sleep apnea: systematic review and meta-analysis. Sleep Med Rev. 2020;52:101312. https://doi.org/10.1016/j.smrv.2020.101312.

    Article  PubMed  Google Scholar 

  32. Sutherland K, Phillips CL, Cistulli PA. Efficacy versus effectiveness in the treatment of obstructive sleep apnea: CPAP and oral appliances. J Dent Sleep Med. 2015;2(4):175–81.

    Article  Google Scholar 

  33. Weaver TE, Maislin G, Dinges DF, Bloxham T, George CF, Greenberg H, et al. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007;30(6):711–9. https://doi.org/10.1093/sleep/30.6.711.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sanchez-de-la-Torre M, Khalyfa A, Sanchez-de-la-Torre A, Martinez-Alonso M, Martinez-Garcia MA, Barcelo A, et al. Precision medicine in patients with resistant hypertension and obstructive sleep apnea: blood pressure response to continuous positive airway pressure treatment. J Am Coll Cardiol. 2015;66(9):1023–32. https://doi.org/10.1016/j.jacc.2015.06.1315.

    Article  PubMed  Google Scholar 

  35. Castro-Grattoni AL, Torres G, Martinez-Alonso M, Barbe F, Turino C, Sanchez-de-la-Torre A, et al. Blood pressure response to CPAP treatment in subjects with obstructive sleep apnoea: the predictive value of 24-h ambulatory blood pressure monitoring. Eur Respir J. 2017;50(4). https://doi.org/10.1183/13993003.00651-2017.

  36. Chai-Coetzer CL, Luo YM, Antic NA, Zhang XL, Chen BY, He QY, et al. Predictors of long-term adherence to continuous positive airway pressure therapy in patients with obstructive sleep apnea and cardiovascular disease in the SAVE study. Sleep. 2013;36(12):1929–37. https://doi.org/10.5665/sleep.3232.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dort LC, Savard N, Dort E, Dort J. Does CPAP pressure predict treatment outcome with oral appliances? J Dent Sleep Med. 2016;3(4):113–7.

    Article  Google Scholar 

  38. Storesund A, Johansson A, Bjorvatn B, Lehmann S. Oral appliance treatment outcome can be predicted by continuous positive airway pressure in moderate to severe obstructive sleep apnea. Sleep Breath. 2018;22(2):385–92. https://doi.org/10.1007/s11325-017-1578-2.

    Article  PubMed  Google Scholar 

  39. Bamagoos AA, Eckert DJ, Sutherland K, Ngiam J, Cistulli PA. Dose-dependent effects of mandibular advancement on optimal positive airway pressure requirements in obstructive sleep apnoea. Sleep Breath. 2019. https://doi.org/10.1007/s11325-019-01930-3.

  40. Tsuiki S, Kobayashi M, Namba K, Oka Y, Komada Y, Kagimura T, et al. Optimal positive airway pressure predicts oral appliance response to sleep apnoea. Eur Respir J. 2010;35(5):1098–105. https://doi.org/10.1183/09031936.00121608.

    Article  CAS  PubMed  Google Scholar 

  41. Chan AS, Lee RW, Srinivasan VK, Darendeliler MA, Grunstein RR, Cistulli PA. Nasopharyngoscopic evaluation of oral appliance therapy for obstructive sleep apnoea. Eur Respir J. 2010;35(4):836–42. https://doi.org/10.1183/09031936.00077409.

    Article  CAS  PubMed  Google Scholar 

  42. Okuno K, Sasao Y, Nohara K, Sakai T, Pliska BT, Lowe AA, et al. Endoscopy evaluation to predict oral appliance outcomes in obstructive sleep apnoea. Eur Respir J. 2016;47(5):1410–9. https://doi.org/10.1183/13993003.01088-2015.

    Article  PubMed  Google Scholar 

  43. Op de Beeck S, Dieltjens M, Verbruggen AE, Vroegop AV, Wouters K, Hamans E, et al. Phenotypic labelling using drug-induced sleep endoscopy improves patient selection for mandibular advancement device outcome: a prospective study. J Clin Sleep Med. 2019;15(8):1089–99. https://doi.org/10.5664/jcsm.7796.

    Article  Google Scholar 

  44. Vroegop AV, Vanderveken OM, Dieltjens M, Wouters K, Saldien V, Braem MJ, et al. Sleep endoscopy with simulation bite for prediction of oral appliance treatment outcome. J Sleep Res. 2013;22(3):348–55. https://doi.org/10.1111/jsr.12008.

    Article  PubMed  Google Scholar 

  45. Remmers J, Charkhandeh S, Grosse J, Topor Z, Brant R, Santosham P, et al. Remotely controlled mandibular protrusion during sleep predicts therapeutic success with oral appliances in patients with obstructive sleep apnea. Sleep. 2013;36(10):1517–25, 25A. https://doi.org/10.5665/sleep.3048.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sutherland K, Ngiam J, Cistulli PA. Performance of remotely controlled mandibular protrusion sleep studies for prediction of oral appliance treatment response. J Clin Sleep Med. 2017;13(3):411–7. https://doi.org/10.5664/jcsm.6492.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barnes H, Edwards BA, Joosten SA, Naughton MT, Hamilton GS, Dabscheck E. Positional modification techniques for supine obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev. 2017;36:107–15. https://doi.org/10.1016/j.smrv.2016.11.004.

    Article  PubMed  Google Scholar 

  48. Sutherland K, Kairaitis K, Yee BJ, Cistulli PA. From CPAP to tailored therapy for obstructive sleep apnoea. Multidiscip Respir Med. 2018;13:44. https://doi.org/10.1186/s40248-018-0157-0.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Naughton MT, Monteith BD, Manton DJ, Dever P, Schachter LM, O'Brien PE, et al. Shorter mandibular length is associated with a greater fall in AHI with weight loss. J Clin Sleep Med. 2015;11(4):451–6. https://doi.org/10.5664/jcsm.4604.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sutherland K, Chapman JL, Cayanan EA, Lowth AB, Hoyos CM, Wong KKH, et al. Does craniofacial morphology relate to sleep apnea severity reduction following weight loss intervention? A patient level meta-analysis. Sleep. 2020;44(3):zsaa207. https://doi.org/10.1093/sleep/zsaa207.

  51. Sutherland K, Phillips CL, Yee BJ, Grunstein RR, Cistulli PA. Maxillomandibular volume influences the relationship between weight loss and improvement in obstructive sleep apnea. Sleep. 2016;39(1):43–9. https://doi.org/10.5665/sleep.5314.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vigneron A, Tamisier R, Orset E, Pepin JL, Bettega G. Maxillomandibular advancement for obstructive sleep apnea syndrome treatment: long-term results. J Craniomaxillofac Surg. 2017;45(2):183–91. https://doi.org/10.1016/j.jcms.2016.12.001.

    Article  PubMed  Google Scholar 

  53. Koutsourelakis I, Safiruddin F, Ravesloot M, Zakynthinos S, de Vries N. Surgery for obstructive sleep apnea: sleep endoscopy determinants of outcome. Laryngoscope. 2012;122(11):2587–91. https://doi.org/10.1002/lary.23462.

    Article  PubMed  Google Scholar 

  54. Joosten SA, Leong P, Landry SA, Sands SA, Terrill PI, Mann D, et al. Loop gain predicts the response to upper airway surgery in patients with obstructive sleep Apnea. Sleep. 2017;40(7). https://doi.org/10.1093/sleep/zsx094.

  55. Van de Heyning PH, Badr MS, Baskin JZ, Cramer Bornemann MA, De Backer WA, Dotan Y, et al. Implanted upper airway stimulation device for obstructive sleep apnea. Laryngoscope. 2012;122(7):1626–33. https://doi.org/10.1002/lary.23301.

    Article  PubMed  Google Scholar 

  56. Vanderveken OM, Maurer JT, Hohenhorst W, Hamans E, Lin HS, Vroegop AV, et al. Evaluation of drug-induced sleep endoscopy as a patient selection tool for implanted upper airway stimulation for obstructive sleep apnea. J Clin Sleep Med. 2013;9(5):433–8. https://doi.org/10.5664/jcsm.2658.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Patil SP, Ayappa IA, Caples SM, Kimoff RJ, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: an american academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2019;15(2):301–34. https://doi.org/10.5664/jcsm.7638.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gottlieb DJ, Punjabi NM. Diagnosis and management of obstructive sleep apnea: a review. JAMA. 2020;323(14):1389–400. https://doi.org/10.1001/jama.2020.3514.

    Article  PubMed  Google Scholar 

  59. Mehrtash M, Bakker JP, Ayas N. Predictors of continuous positive airway pressure adherence in patients with obstructive sleep apnea. Lung. 2019;197(2):115–21. https://doi.org/10.1007/s00408-018-00193-1.

    Article  CAS  PubMed  Google Scholar 

  60. Weaver TE. Adherence to positive airway pressure therapy. Curr Opin Pulm Med. 2006;12(6):409–13. https://doi.org/10.1097/01.mcp.0000245715.97256.32.

    Article  PubMed  Google Scholar 

  61. Bartlett D, Wong K, Richards D, Moy E, Espie CA, Cistulli PA, et al. Increasing adherence to obstructive sleep apnea treatment with a group social cognitive therapy treatment intervention: a randomized trial. Sleep. 2013;36(11):1647–54. https://doi.org/10.5665/sleep.3118.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kwiatkowska M, Ayas N. Can telemedicine improve CPAP adherence? Thorax. 2010;65(12):1035–6. https://doi.org/10.1136/thx.2010.140897.

    Article  PubMed  Google Scholar 

  63. Hwang D, Chang JW, Benjafield AV, Crocker ME, Kelly C, Becker KA, et al. Effect of telemedicine education and telemonitoring on continuous positive airway pressure adherence. The Tele-OSA Randomized Trial. Am J Respir Crit Care Med. 2018;197(1):117–26. https://doi.org/10.1164/rccm.201703-0582OC.

    Article  PubMed  Google Scholar 

  64. Ramar K, Dort LC, Katz SG, Lettieri CJ, Harrod CG, Thomas SM, et al. Clinical practice guideline for the treatment of obstructive sleep apnea and snoring with oral appliance therapy: an update for 2015. J Clin Sleep Med. 2015;11(7):773–827. https://doi.org/10.5664/jcsm.4858.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sutherland K, Takaya H, Qian J, Petocz P, Ng AT, Cistulli PA. Oral appliance treatment response and polysomnographic phenotypes of obstructive sleep apnea. J Clin Sleep Med. 2015;11(8):861–8. https://doi.org/10.5664/jcsm.4934.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen H, Eckert DJ, van der Stelt PF, Guo J, Ge S, Emami E, et al. Phenotypes of responders to mandibular advancement device therapy in obstructive sleep apnea patients: a systematic review and meta-analysis. Sleep Med Rev. 2020;49:101229. https://doi.org/10.1016/j.smrv.2019.101229.

    Article  PubMed  Google Scholar 

  67. Alessandri-Bonetti G, Ippolito DR, Bartolucci ML, D'Anto V, Incerti-Parenti S. Cephalometric predictors of treatment outcome with mandibular advancement devices in adult patients with obstructive sleep apnea: a systematic review. Korean J Orthod. 2015;45(6):308–21. https://doi.org/10.4041/kjod.2015.45.6.308.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ng AT, Darendeliler MA, Petocz P, Cistulli PA. Cephalometry and prediction of oral appliance treatment outcome. Sleep Breath. 2012;16(1):47–58. https://doi.org/10.1007/s11325-011-0484-2.

    Article  PubMed  Google Scholar 

  69. Sutherland K, Lee RW, Cistulli PA. Obesity and craniofacial structure as risk factors for obstructive sleep apnoea: impact of ethnicity. Respirology. 2012;17(2):213–22. https://doi.org/10.1111/j.1440-1843.2011.02082.x.

    Article  PubMed  Google Scholar 

  70. Sutherland K, Lee RWW, Chan TO, Ng S, Hui DS, Cistulli PA. Craniofacial phenotyping in Chinese and Caucasian patients with sleep apnea: influence of ethnicity and sex. J Clin Sleep Med. 2018;14(7):1143–51. https://doi.org/10.5664/jcsm.7212.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brown EC, Juge L, Knapman FL, Burke PGR, Ngiam J, Sutherland K, et al. Mandibular advancement splint response is associated with the pterygomandibular raphe. Sleep. 2020. https://doi.org/10.1093/sleep/zsaa222.

  72. Juge L, Yeung J, Knapman FL, Burke PGR, Lowth AB, Gan KZ, et al. Influence of mandibular advancement on tongue dilatory movement during wakefulness and how this is related to oral appliance therapy outcome for obstructive sleep apnoea. Sleep. 2020. https://doi.org/10.1093/sleep/zsaa196.

  73. Marques M, Genta PR, Azarbarzin A, Taranto-Montemurro L, Messineo L, Hess LB, et al. Structure and severity of pharyngeal obstruction determine oral appliance efficacy in sleep apnoea. J Physiol. 2019;597(22):5399–410. https://doi.org/10.1113/JP278164.

    Article  CAS  PubMed  Google Scholar 

  74. Edwards BA, Andara C, Landry S, Sands SA, Joosten SA, Owens RL, et al. Upper-airway collapsibility and loop gain predict the response to oral appliance therapy in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2016;194(11):1413–22. https://doi.org/10.1164/rccm.201601-0099OC.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kairaitis K, Stavrinou R, Parikh R, Wheatley JR, Amis TC. Mandibular advancement decreases pressures in the tissues surrounding the upper airway in rabbits. J Appl Physiol (1985). 2006;100(1):349–56. https://doi.org/10.1152/japplphysiol.00560.2005.

    Article  Google Scholar 

  76. Ng AT, Gotsopoulos H, Qian J, Cistulli PA. Effect of oral appliance therapy on upper airway collapsibility in obstructive sleep apnea. Am J Respir Crit Care Med. 2003;168(2):238–41. https://doi.org/10.1164/rccm.200211-1275OC.

    Article  PubMed  Google Scholar 

  77. Ng AT, Qian J, Cistulli PA. Oropharyngeal collapse predicts treatment response with oral appliance therapy in obstructive sleep apnea. Sleep. 2006;29(5):666–71.

    PubMed  Google Scholar 

  78. Landry SA, Joosten SA, Eckert DJ, Jordan AS, Sands SA, White DP, et al. Therapeutic CPAP level predicts upper airway collapsibility in patients with obstructive sleep apnea. Sleep. 2017;40(6). https://doi.org/10.1093/sleep/zsx056.

  79. Sutherland K, Phillips CL, Davies A, Srinivasan VK, Dalci O, Yee BJ, et al. CPAP pressure for prediction of oral appliance treatment response in obstructive sleep apnea. J Clin Sleep Med. 2014;10(9):943–9. https://doi.org/10.5664/jcsm.4020.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Genta PR, Sands SA, Butler JP, Loring SH, Katz ES, Demko BG, et al. Airflow shape is associated with the pharyngeal structure causing OSA. Chest. 2017;152(3):537–46. https://doi.org/10.1016/j.chest.2017.06.017.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sands SA, Edwards BA, Terrill PI, Taranto-Montemurro L, Azarbarzin A, Marques M, et al. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 2018;197(9):1187–97. https://doi.org/10.1164/rccm.201707-1435OC.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sands SA, Terrill PI, Edwards BA, Taranto Montemurro L, Azarbarzin A, Marques M, et al. Quantifying the arousal threshold using polysomnography in obstructive sleep apnea. Sleep. 2018;41(1). https://doi.org/10.1093/sleep/zsx183.

  83. Terrill PI, Edwards BA, Nemati S, Butler JP, Owens RL, Eckert DJ, et al. Quantifying the ventilatory control contribution to sleep apnoea using polysomnography. Eur Respir J. 2015;45(2):408–18. https://doi.org/10.1183/09031936.00062914.

    Article  PubMed  Google Scholar 

  84. Bamagoos AA, Cistulli PA, Sutherland K, Madronio M, Eckert DJ, Hess L, et al. Polysomnographic endotyping to select patients with obstructive sleep apnea for oral appliances. Ann Am Thorac Soc. 2019;16(11):1422–31. https://doi.org/10.1513/AnnalsATS.201903-190OC.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vena D, Azarbarzin A, Marques M, Op de Beeck S, Vanderveken OM, Edwards BA, et al. Predicting sleep apnea responses to oral appliance therapy using polysomnographic airflow. Sleep. 2020;43(7). https://doi.org/10.1093/sleep/zsaa004.

  86. Remmers JE, Topor Z, Grosse J, Vranjes N, Mosca EV, Brant R, et al. A Feedback-controlled mandibular positioner identifies individuals with sleep apnea who will respond to oral appliance therapy. J Clin Sleep Med. 2017;13(7):871–80. https://doi.org/10.5664/jcsm.6656.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Okuno K, Pliska BT, Hamoda M, Lowe AA, Almeida FR. Prediction of oral appliance treatment outcomes in obstructive sleep apnea: a systematic review. Sleep Med Rev. 2016;30:25–33. https://doi.org/10.1016/j.smrv.2015.11.007.

    Article  PubMed  Google Scholar 

  88. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB, et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med. 2009;169(17):1619–26. https://doi.org/10.1001/archinternmed.2009.266.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kuna ST, Reboussin DM, Borradaile KE, Sanders MH, Millman RP, Zammit G, et al. Long-term effect of weight loss on obstructive sleep apnea severity in obese patients with type 2 diabetes. Sleep. 2013;36(5):641–9A. https://doi.org/10.5665/sleep.2618.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kuna ST, Reboussin DM, Strotmeyer ES, Millman RP, Zammit G, Walkup MP, et al. Effects of weight loss on obstructive sleep apnea severity. ten-year results of the Sleep AHEAD study. Am J Respir Crit Care Med. 2021;203(2):221–9. https://doi.org/10.1164/rccm.201912-2511OC.

    Article  PubMed  Google Scholar 

  91. Tuomilehto H, Seppa J, Uusitupa M, Tuomilehto J, Gylling H. Kuopio Sleep Apnea G. Weight reduction and increased physical activity to prevent the progression of obstructive sleep apnea: a 4-year observational postintervention follow-up of a randomized clinical trial. [corrected]. JAMA Intern Med. 2013;173(10):929–30. https://doi.org/10.1001/jamainternmed.2013.389.

    Article  PubMed  Google Scholar 

  92. Tuomilehto HP, Seppa JM, Partinen MM, Peltonen M, Gylling H, Tuomilehto JO, et al. Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. Am J Respir Crit Care Med. 2009;179(4):320–7. https://doi.org/10.1164/rccm.200805-669OC.

    Article  PubMed  Google Scholar 

  93. Aguiar IC, Freitas WR Jr, Santos IR, Apostolico N, Nacif SR, Urbano JJ, et al. Obstructive sleep apnea and pulmonary function in patients with severe obesity before and after bariatric surgery: a randomized clinical trial. Multidiscip Respir Med. 2014;9(1):43. https://doi.org/10.1186/2049-6958-9-43.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Dixon JB, Schachter LM, O'Brien PE, Jones K, Grima M, Lambert G, et al. Surgical vs conventional therapy for weight loss treatment of obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;308(11):1142–9. https://doi.org/10.1001/2012.jama.11580.

    Article  CAS  PubMed  Google Scholar 

  95. Feigel-Guiller B, Drui D, Dimet J, Zair Y, Le Bras M, Fuertes-Zamorano N, et al. Laparoscopic gastric banding in obese patients with sleep apnea: a 3-year controlled study and follow-up after 10 years. Obes Surg. 2015;25(10):1886–92. https://doi.org/10.1007/s11695-015-1627-5.

    Article  PubMed  Google Scholar 

  96. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19–25. https://doi.org/10.1164/ajrccm.163.1.2001008.

    Article  CAS  PubMed  Google Scholar 

  97. Hudgel DW, Patel SR, Ahasic AM, Bartlett SJ, Bessesen DH, Coaker MA, et al. The role of weight management in the treatment of adult obstructive sleep apnea. an official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2018;198(6):e70–87. https://doi.org/10.1164/rccm.201807-1326ST.

    Article  PubMed  Google Scholar 

  98. Johansson K, Neovius M, Lagerros YT, Harlid R, Rossner S, Granath F, et al. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ. 2009;339:b4609. https://doi.org/10.1136/bmj.b4609.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Joosten SA, Hamilton GS, Naughton MT. Impact of weight loss management in OSA. Chest. 2017;152(1):194–203. https://doi.org/10.1016/j.chest.2017.01.027.

    Article  PubMed  Google Scholar 

  100. Pasman WJ, Saris WH, Westerterp-Plantenga MS. Predictors of weight maintenance. Obes Res. 1999;7(1):43–50. https://doi.org/10.1002/j.1550-8528.1999.tb00389.x.

    Article  CAS  PubMed  Google Scholar 

  101. Handjieva-Darlenska T, Handjiev S, Larsen TM, van Baak MA, Jebb S, Papadaki A, et al. Initial weight loss on an 800-kcal diet as a predictor of weight loss success after 8 weeks: the Diogenes study. Eur J Clin Nutr. 2010;64(9):994–9. https://doi.org/10.1038/ejcn.2010.110.

    Article  CAS  PubMed  Google Scholar 

  102. Linde JA, Jeffery RW, Finch EA, Ng DM, Rothman AJ. Are unrealistic weight loss goals associated with outcomes for overweight women? Obes Res. 2004;12(3):569–76. https://doi.org/10.1038/oby.2004.65.

    Article  PubMed  Google Scholar 

  103. Sumithran P, Purcell K, Kuyruk S, Proietto J, Prendergast LA. Combining biological and psychosocial baseline variables did not improve prediction of outcome of a very-low-energy diet in a clinic referral population. Clin Obes. 2018;8(1):30–8. https://doi.org/10.1111/cob.12229.

    Article  CAS  PubMed  Google Scholar 

  104. Yingjuan M, Siang WH, Leong Alvin TK, Poh HP. Positional Therapy for positional obstructive sleep apnea. Sleep Med Clin. 2020;15(2):261–75. https://doi.org/10.1016/j.jsmc.2020.02.012.

    Article  PubMed  Google Scholar 

  105. Joosten SA, O'Driscoll DM, Berger PJ, Hamilton GS. Supine position related obstructive sleep apnea in adults: pathogenesis and treatment. Sleep Med Rev. 2014;18(1):7–17. https://doi.org/10.1016/j.smrv.2013.01.005.

    Article  PubMed  Google Scholar 

  106. Joosten SA, O'Donoghue FJ, Rochford PD, Barnes M, Hamza K, Churchward TJ, et al. Night-to-night repeatability of supine-related obstructive sleep apnea. Ann Am Thorac Soc. 2014;11(5):761–9. https://doi.org/10.1513/AnnalsATS.201309-306OC.

    Article  PubMed  Google Scholar 

  107. Oksenberg A, Goizman V, Eitan E, Nasser K, Gadoth N, Leppanen T. Obstructive sleep apnea: do positional patients become nonpositional patients with time? Laryngoscope. 2020;130(9):2263–8. https://doi.org/10.1002/lary.28387.

    Article  PubMed  Google Scholar 

  108. Joosten SA, Sands SA, Edwards BA, Hamza K, Turton A, Lau KK, et al. Evaluation of the role of lung volume and airway size and shape in supine-predominant obstructive sleep apnoea patients. Respirology. 2015;20(5):819–27. https://doi.org/10.1111/resp.12549.

    Article  PubMed  Google Scholar 

  109. Saigusa H, Suzuki M, Higurashi N, Kodera K. Three-dimensional morphological analyses of positional dependence in patients with obstructive sleep apnea syndrome. Anesthesiology. 2009;110(4):885–90. https://doi.org/10.1097/ALN.0b013e31819b5d57.

    Article  PubMed  Google Scholar 

  110. Frank MH, Ravesloot MJ, van Maanen JP, Verhagen E, de Lange J, de Vries N. Positional OSA part 1: Towards a clinical classification system for position-dependent obstructive sleep apnoea. Sleep Breath. 2015;19(2):473–80. https://doi.org/10.1007/s11325-014-1022-9.

    Article  CAS  PubMed  Google Scholar 

  111. Watanabe T, Isono S, Tanaka A, Tanzawa H, Nishino T. Contribution of body habitus and craniofacial characteristics to segmental closing pressures of the passive pharynx in patients with sleep-disordered breathing. Am J Respir Crit Care Med. 2002;165(2):260–5. https://doi.org/10.1164/ajrccm.165.2.2009032.

    Article  PubMed  Google Scholar 

  112. MacKay SG, Chan L. Surgical approaches to obstructive sleep apnea. Sleep Med Clin. 2016;11(3):331–41. https://doi.org/10.1016/j.jsmc.2016.04.003.

    Article  PubMed  Google Scholar 

  113. MacKay SG, Lewis R, McEvoy D, Joosten S, Holt NR. Surgical management of obstructive sleep apnoea: a position statement of the Australasian Sleep Association(). Respirology. 2020;25(12):1292–308. https://doi.org/10.1111/resp.13967.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sundaram S, Bridgman SA, Lim J, Lasserson TJ. Surgery for obstructive sleep apnoea. Cochrane Database Syst Rev. 2005;4:CD001004. https://doi.org/10.1002/14651858.CD001004.pub2.

    Article  Google Scholar 

  115. Schwartz AR, Rowley JA, Thut DC, Permutt S, Smith PL. Structural basis for alterations in upper airway collapsibility. Sleep. 1996;19(10 Suppl):S184–8. https://doi.org/10.1093/sleep/19.suppl_10.184.

    Article  CAS  PubMed  Google Scholar 

  116. Browaldh N, Nerfeldt P, Lysdahl M, Bring J, Friberg D. SKUP3 randomised controlled trial: polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax. 2013;68(9):846–53. https://doi.org/10.1136/thoraxjnl-2012-202610.

    Article  PubMed  Google Scholar 

  117. Fehrm J, Friberg D, Bring J, Browaldh N. Blood pressure after modified uvulopalatopharyngoplasty: results from the SKUP(3) randomized controlled trial. Sleep Med. 2017;34:156–61. https://doi.org/10.1016/j.sleep.2017.02.030.

    Article  PubMed  Google Scholar 

  118. Holty JE, Guilleminault C. Maxillomandibular advancement for the treatment of obstructive sleep apnea: a systematic review and meta-analysis. Sleep Med Rev. 2010;14(5):287–97. https://doi.org/10.1016/j.smrv.2009.11.003.

    Article  PubMed  Google Scholar 

  119. Zaghi S, Holty JE, Certal V, Abdullatif J, Guilleminault C, Powell NB, et al. Maxillomandibular advancement for treatment of obstructive sleep apnea: a meta-analysis. JAMA Otolaryngol Head Neck Surg. 2016;142(1):58–66. https://doi.org/10.1001/jamaoto.2015.2678.

    Article  PubMed  Google Scholar 

  120. Cillo JE Jr, Dattilo DJ. Maxillomandibular advancement for obstructive sleep apnea produces long-term horizontal advancement of the maxilla and mandible. J Oral Maxillofac Surg. 2019;77(12):2524–8. https://doi.org/10.1016/j.joms.2019.06.176.

    Article  PubMed  Google Scholar 

  121. John CR, Gandhi S, Sakharia AR, James TT. Maxillomandibular advancement is a successful treatment for obstructive sleep apnoea: a systematic review and meta-analysis. Int J Oral Maxillofac Surg. 2018;47(12):1561–71. https://doi.org/10.1016/j.ijom.2018.05.015.

    Article  CAS  PubMed  Google Scholar 

  122. Li Y, Ye J, Han D, Zhao D, Cao X, Orr J, et al. The effect of upper airway surgery on loop gain in obstructive sleep apnea. J Clin Sleep Med. 2019;15(6):907–13. https://doi.org/10.5664/jcsm.7848.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Strollo PJ Jr, Soose RJ, Maurer JT, de Vries N, Cornelius J, Froymovich O, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med. 2014;370(2):139–49. https://doi.org/10.1056/NEJMoa1308659.

    Article  CAS  PubMed  Google Scholar 

  124. Schwartz AR, Bennett ML, Smith PL, De Backer W, Hedner J, Boudewyns A, et al. Therapeutic electrical stimulation of the hypoglossal nerve in obstructive sleep apnea. Arch Otolaryngol Head Neck Surg. 2001;127(10):1216–23. https://doi.org/10.1001/archotol.127.10.1216.

    Article  CAS  PubMed  Google Scholar 

  125. Eastwood PR, Barnes M, MacKay SG, Wheatley JR, Hillman DR, Nguyen XL, et al. Bilateral hypoglossal nerve stimulation for treatment of adult obstructive sleep apnoea. Eur Respir J. 2020;55(1). https://doi.org/10.1183/13993003.01320-2019.

  126. Eastwood PR, Barnes M, Walsh JH, Maddison KJ, Hee G, Schwartz AR, et al. Treating obstructive sleep apnea with hypoglossal nerve stimulation. Sleep. 2011;34(11):1479–86. https://doi.org/10.5665/sleep.1380.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kent DT, Zealear D, Schwartz AR. Ansa cervicalis stimulation: a new direction in neurostimulation for OSA. Chest. 2020. https://doi.org/10.1016/j.chest.2020.10.010.

  128. Oliven A, Aspandiarov E, Gankin I, Gaitini L, Tov N. Collapsibility of the relaxed pharynx and risk of sleep apnoea. Eur Respir J. 2008;32(5):1309–15. https://doi.org/10.1183/09031936.00139407.

    Article  CAS  PubMed  Google Scholar 

  129. Oliven A, O'Hearn DJ, Boudewyns A, Odeh M, De Backer W, van de Heyning P, et al. Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea. J Appl Physiol (1985). 2003;95(5):2023–9. https://doi.org/10.1152/japplphysiol.00203.2003.

    Article  Google Scholar 

  130. Safiruddin F, Vanderveken OM, de Vries N, Maurer JT, Lee K, Ni Q, et al. Effect of upper-airway stimulation for obstructive sleep apnoea on airway dimensions. Eur Respir J. 2015;45(1):129–38. https://doi.org/10.1183/09031936.00059414.

    Article  PubMed  Google Scholar 

  131. Schwartz AR, Barnes M, Hillman D, Malhotra A, Kezirian E, Smith PL, et al. Acute upper airway responses to hypoglossal nerve stimulation during sleep in obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185(4):420–6. https://doi.org/10.1164/rccm.201109-1614OC.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Friedman M, Jacobowitz O, Hwang MS, Bergler W, Fietze I, Rombaux P, et al. Targeted hypoglossal nerve stimulation for the treatment of obstructive sleep apnea: six-month results. Laryngoscope. 2016;126(11):2618–23. https://doi.org/10.1002/lary.25909.

    Article  PubMed  Google Scholar 

  133. Steffen A, Frenzel H, Wollenberg B, Konig IR. Patient selection for upper airway stimulation: is concentric collapse in sleep endoscopy predictable? Sleep Breath. 2015;19(4):1373–6. https://doi.org/10.1007/s11325-015-1277-9.

    Article  PubMed  Google Scholar 

  134. Boon M, Huntley C, Steffen A, Maurer JT, Sommer JU, Schwab R, et al. Upper airway stimulation for obstructive sleep apnea: results from the ADHERE registry. Otolaryngol Head Neck Surg. 2018;159(2):379–85. https://doi.org/10.1177/0194599818764896.

    Article  PubMed  Google Scholar 

  135. Steffen A, Sommer JU, Hofauer B, Maurer JT, Hasselbacher K, Heiser C. Outcome after one year of upper airway stimulation for obstructive sleep apnea in a multicenter German post-market study. Laryngoscope. 2018;128(2):509–15. https://doi.org/10.1002/lary.26688.

    Article  PubMed  Google Scholar 

  136. Mahmoud AF, Thaler ER. Upper airway stimulation therapy and prior airway surgery for obstructive sleep apnea. Laryngoscope. 2018;128(6):1486–9. https://doi.org/10.1002/lary.26956.

    Article  PubMed  Google Scholar 

  137. Schwab RJ, Wang SH, Verbraecken J, Vanderveken OM, Van de Heyning P, Vos WG, et al. Anatomic predictors of response and mechanism of action of upper airway stimulation therapy in patients with obstructive sleep apnea. Sleep. 2018;41(4). https://doi.org/10.1093/sleep/zsy021.

  138. Eckert DJ, Malhotra A, Wellman A, White DP. Trazodone increases the respiratory arousal threshold in patients with obstructive sleep apnea and a low arousal threshold. Sleep. 2014;37(4):811–9. https://doi.org/10.5665/sleep.3596.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Heinzer RC, White DP, Jordan AS, Lo YL, Dover L, Stevenson K, et al. Trazodone increases arousal threshold in obstructive sleep apnoea. Eur Respir J. 2008;31(6):1308–12. https://doi.org/10.1183/09031936.00067607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Messineo L, Eckert DJ, Lim R, Chiang A, Azarbarzin A, Carter SG, et al. Zolpidem increases sleep efficiency and the respiratory arousal threshold without changing sleep apnoea severity and pharyngeal muscle activity. J Physiol. 2020;598(20):4681–92. https://doi.org/10.1113/JP280173.

    Article  CAS  PubMed  Google Scholar 

  141. Carter SG, Berger MS, Carberry JC, Bilston LE, Butler JE, Tong BK, et al. Zopiclone increases the arousal threshold without impairing genioglossus activity in obstructive sleep apnea. Sleep. 2016;39(4):757–66. https://doi.org/10.5665/sleep.5622.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Taranto-Montemurro L, Messineo L, Azarbarzin A, Vena D, Hess LB, Calianese NA, et al. Effects of the combination of atomoxetine and oxybutynin on OSA endotypic traits. Chest. 2020;157(6):1626–36. https://doi.org/10.1016/j.chest.2020.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mehta V, Vasu TS, Phillips B, Chung F. Obstructive sleep apnea and oxygen therapy: a systematic review of the literature and meta-analysis. J Clin Sleep Med. 2013;9(3):271–9. https://doi.org/10.5664/jcsm.2500.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wang D, Wong KK, Rowsell L, Don GW, Yee BJ, Grunstein RR. Predicting response to oxygen therapy in obstructive sleep apnoea patients using a 10-minute daytime test. Eur Respir J. 2018;51(1). https://doi.org/10.1183/13993003.01587-2017.

  145. • Mazzotti DR, Lim DC, Sutherland K, Bittencourt L, Mindel JW, Magalang U, et al. Opportunities for utilizing polysomnography signals to characterize obstructive sleep apnea subtypes and severity. Physiol Meas. 2018;39(9):09TR1. https://doi.org/10.1088/1361-6579/aad5feThis recent review summarises opportunities for computer-aided polysomnography signal processing algorithms for potential use as tools to identify sleep apnea phenotypes which could require different management approaches.

    Article  Google Scholar 

  146. Amatoury J, Azarbarzin A, Younes M, Jordan AS, Wellman A, Eckert DJ. Arousal intensity is a distinct pathophysiological trait in obstructive sleep apnea. Sleep. 2016;39(12):2091–100. https://doi.org/10.5665/sleep.6304.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Azarbarzin A, Ostrowski M, Younes M, Keenan BT, Pack AI, Staley B, et al. Arousal responses during overnight polysomnography and their reproducibility in healthy young adults. Sleep. 2015;38(8):1313–21. https://doi.org/10.5665/sleep.4916.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Azarbarzin A, Ostrowski M, Hanly P, Younes M. Relationship between arousal intensity and heart rate response to arousal. Sleep. 2014;37(4):645–53. https://doi.org/10.5665/sleep.3560.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Younes M, Hanly PJ. Immediate postarousal sleep dynamics: an important determinant of sleep stability in obstructive sleep apnea. J Appl Physiol (1985). 2016;120(7):801–8. https://doi.org/10.1152/japplphysiol.00880.2015.

    Article  Google Scholar 

  150. Cao J, Feng J, Li L, Chen B. Obstructive sleep apnea promotes cancer development and progression: a concise review. Sleep Breath. 2015;19(2):453–7. https://doi.org/10.1007/s11325-015-1126-x.

    Article  PubMed  Google Scholar 

  151. Baguet JP, Hammer L, Levy P, Pierre H, Launois S, Mallion JM, et al. The severity of oxygen desaturation is predictive of carotid wall thickening and plaque occurrence. Chest. 2005;128(5):3407–12. https://doi.org/10.1378/chest.128.5.3407.

    Article  PubMed  Google Scholar 

  152. Jacobsen JH, Shi L, Mokhlesi B. Factors associated with excessive daytime sleepiness in patients with severe obstructive sleep apnea. Sleep Breath. 2013;17(2):629–35. https://doi.org/10.1007/s11325-012-0733-z.

    Article  PubMed  Google Scholar 

  153. Idiaquez J, Santos I, Santin J, Del Rio R, Iturriaga R. Neurobehavioral and autonomic alterations in adults with obstructive sleep apnea. Sleep Med. 2014;15(11):1319–23. https://doi.org/10.1016/j.sleep.2014.05.030.

    Article  PubMed  Google Scholar 

  154. Azarbarzin A, Sands SA, Stone KL, Taranto-Montemurro L, Messineo L, Terrill PI, et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality: the Osteoporotic Fractures in Men Study and the Sleep Heart Health Study. Eur Heart J. 2018. https://doi.org/10.1093/eurheartj/ehy624.

  155. Gehring J, Gesche H, Drewniok G, Kuchler G, Patzak A. Nocturnal blood pressure fluctuations measured by using pulse transit time in patients with severe obstructive sleep apnea syndrome. Sleep Breath. 2018;22(2):337–43. https://doi.org/10.1007/s11325-017-1555-9.

    Article  PubMed  Google Scholar 

  156. Azarbarzin A, Marques M, Sands SA, Op de Beeck S, Genta PR, Taranto-Montemurro L, et al. Predicting epiglottic collapse in patients with obstructive sleep apnoea. Eur Respir J. 2017;50(3). https://doi.org/10.1183/13993003.00345-2017.

  157. Sebastian A, Cistulli PA, Cohen G, de Chazal P. Automated identification of the predominant site of upper airway collapse in obstructive sleep apnoea patients using snore signal. Physiol Meas. 2020;41(9):095005. https://doi.org/10.1088/1361-6579/abaa33.

    Article  PubMed  Google Scholar 

  158. LeCun Y, Bengio Y. Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks. 1995;3361(10):1995.

  159. Dean DA 2nd, Goldberger AL, Mueller R, Kim M, Rueschman M, Mobley D, et al. Scaling up scientific discovery in sleep medicine: the National Sleep Research Resource. Sleep. 2016;39(5):1151–64. https://doi.org/10.5665/sleep.5774.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Bonsignore MR, Hedner J, group Es. The European Sleep Apnoea Database (ESADA) ERS Clinical Research Collaboration: past, present and future. Eur Respir J. 2018;52(4). https://doi.org/10.1183/13993003.01666-2018.

  161. Allen AH, Beaudin AE, Fox N, Raneri JK, Skomro RP, Hanly PJ, et al. Symptom subtypes and cognitive function in a clinic-based OSA cohort: a multi-centre Canadian study. Sleep Med. 2020;74:92–8. https://doi.org/10.1016/j.sleep.2020.05.001.

    Article  PubMed  Google Scholar 

  162. Beaudin AE, Raneri JK, Ayas NT, Skomro RP, Fox N, Hirsch Allen AM, et al. Cognitive function in a sleep clinic cohort of patients with obstructive sleep Apnea. Ann Am Thorac Soc. 2020. https://doi.org/10.1513/AnnalsATS.202004-313OC.

  163. Sutherland K, Sarkissian N, Amis TC, Bennett C, Chan ASL, Chan M, et al. Sydney Sleep Biobank (SSB): development of a research resource. Hoboken: Wiley; 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PAC devised the outline of the article. All authors drafted sections of the manuscript and critically revised the work.

Corresponding author

Correspondence to Peter A. Cistulli.

Ethics declarations

Conflict of Interest

PAC has an appointment to an endowed academic Chair at the University of Sydney that was created from ResMed funding. He receives no personal fees and this relationship is managed by an Oversight Committee of the University. He has received research support from ResMed, SomnoMed, Zephyr Sleep Technologies, and Bayer. He is a consultant / adviser to Zephyr Sleep Technologies, Signifier Medical Technologies, SomnoMed, and ResMed. He has a pecuniary interest in SomnoMed related to a previous role in R&D (2004). He also receives royalties from Quintessence and Wolters Kluwer.

PdC holds an endowed academic chair at the University of Sydney, established through funding from ResMed and has received research support from ResMed and SpaceLabs.

KK reports research funding from the ResMed Foundation.

KS, BJY, and JW declare no conflicts of interest that are relevant to the content of this article.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on SLEEP MEDICINE: Sleep Apnea

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutherland, K., Yee, B.J., Kairaitis, K. et al. A Phenotypic Approach for Personalised Management of Obstructive Sleep Apnoea. Curr Otorhinolaryngol Rep 9, 223–237 (2021). https://doi.org/10.1007/s40136-021-00346-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-021-00346-6

Keywords

Navigation