Skip to main content

Advertisement

Log in

Retinal Tamponades: Current Uses and Future Technologies

  • Retina (R Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this article, the current use and limitations of existing retinal tamponades are discussed. Potential novel developments that address those limitations are subsequently highlighted, along with areas of future improvements.

Recent Findings

While retinal tamponades have existed for decades and improved the treatment of retinal detachments, many problems still exist with their use, including inadequate tamponade of the inferior retina, toxicity from retained heavy liquids, glaucoma, and keratopathy, among others. New advancements in the components of heavy liquids and vitreous substitutes aim to mitigate those issues.

Summary

Existing retinal tamponades, including perfluorocarbon heavy liquids, fluorinated gases, and silicone oil, have specific limitations that cause potentially avoidable morbidity. New developments, such as heavy silicone oil, novel vitreous gels, and future avenues of approach, such as potentially reabsorbing heavy liquids may help increase our ability to treat retinal detachments with fewer complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitry D, Charteris DG, Fleck BW, Campbell H, Singh J. The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. Br J Ophthalmol. 2010;94(6):678–84.

    CAS  PubMed  Google Scholar 

  2. Ohm J. On the treatment of retinal detachment by surgical evacuation of subretinal fluid and injection of air into the vitreous. Albrecht Von Graefes Arch Für Ophthalmol. 1911;79(3):442–50.

    Google Scholar 

  3. Gonin J. The treatment of detached retina by searing the retinal tears. Arch Ophthalmol. 1930;4(5):621–5.

    Google Scholar 

  4. Murtagh PJ, Stephenson KA, Rhatigan M, McElnea EM, Connell PP, Keegan DJ. Rhegmatogenous retinal detachments: primary reattachment rates and visual outcomes over a 4-year period. Ir J Med Sci. 2020;189(1):355–63.

    PubMed  Google Scholar 

  5. Li Y, Cheung N, Jia L, Zhang H, Liu N. Surgical outcomes of 25-gauge pars plana vitrectomy using air as an internal tamponade for primary rhegmatogenous retinal detachment. Retina. 2020.

  6. Wang JC, Ryan EH, Ryan C, Kakulavarapu S, Mardis PJ, Rodriguez M, Stefater JA, Forbes NJ, Gupta O, Capone A Jr, Emerson GG, Joseph DP, Eliott D, Yonekawa Y; Primary Retinal Detachment Outcomes (PRO) Study Group. Factors associated with the use of 360-degree laser retinopexy during primary vitrectomy with or without scleral buckle for rhegmatogenous retinal detachment and impact on surgical outcomes (pro study report number 4). Retina. 2019.

  7. Goldman DR, Shah CP, Heier JS. Expanded criteria for pneumatic retinopexy and potential cost savings. Ophthalmology. 2014;121(1):318–26.

    PubMed  Google Scholar 

  8. Mohamed S, Lai TY. Intraocular gas in vitreoretinal surgery. HK J Ophthalmol. 2010;14(1):8–13.

    Google Scholar 

  9. Petersen J. The physical and surgical aspects of silicone oil in the vitreous cavity. Graefes Arch Clin Exp Ophthalmol. 1987;225(6):452–6.

    CAS  PubMed  Google Scholar 

  10. Regillo CD, Tornambe PE. Primary retinal detachment repair. In: Regillo CD, Brown GC, Flynn Jr HW, editors. Vitreoretinal disease: the essentials. 1st ed. New York: Thieme; 1998. p. 631–46.

    Google Scholar 

  11. Zauberman H. Tensile strength of chorioretinal lesions produced by photocoagulation, diathermy, and cryopexy. Br J Ophthalmol. 1969;53:749–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoon YH, Marmor MF. Rapid enhancement of retinal adhesion by laser photocoagulation. Ophthalmology. 1988;95:1385–138.

    CAS  PubMed  Google Scholar 

  13. Chang S. Low viscosity liquid fluorochemicals in vitreous surgery. Am J Ophthalmol. 1987 Jan 15;103(1):38–43.

    CAS  PubMed  Google Scholar 

  14. Kreiger AE, Lewis H, Management of Giant Retinal Tears without Scleral Buckling. Use of radical dissection of the vitreous base and perfluoro-octane and intraocular tamponade. Ophthalmology. 1992;99(4):491–7.

    CAS  PubMed  Google Scholar 

  15. Scott IU, Murray TG, Flynn HW Jr, Feuer WJ, Schiffman JC. Outcomes and complications associated with giant retinal tear management using perfluoro-n-octane. Ophthalmology. 2002;109(10):1828–33.

    PubMed  Google Scholar 

  16. Shunmugam M, Ang GS, Lois N. Giant retinal tears. Surv Ophthalmol. 2014 Mar-Apr;59(2):192–216.

    PubMed  Google Scholar 

  17. Kreissig I. The perfluorocarbon gases. In: Practical guide to minimal surgery for retinal detachment, vol. 2. 1st ed. Stuttgart: Thieme; 2000. p. 129–32.

    Google Scholar 

  18. Russo A, Morescalchi F, Donati S, Gambicorti E, Azzolini C, Costagliola C, et al. Heavy and standard silicone oil: intraocular inflammation. Int Ophthalmol. 2018 Apr;38(2):855–67.

    PubMed  Google Scholar 

  19. Sullivan PM, Luff AJ, Aylward GW. Results of primary retinal reattachment surgery: a prospective audit. Eye Lond Engl. 1997;11(Pt 6):869–71.

    Google Scholar 

  20. Scott IU, Flynn HW Jr, Murray TG, Smiddy WE, Davis JL, Feuer WJ. Outcomes of complex retinal detachment repair using 1000- vs 5000-centistoke silicone oil. Arch Ophthalmol. 2005;123(4):473–8.

    CAS  PubMed  Google Scholar 

  21. Douglas JF, et al. Viscosity. In: Fluid mechanics. 5th ed. Harlow: England; 2005. p. 11–4.

    Google Scholar 

  22. Stilma JS, Koster R, Zivojnović R. Radical vitrectomy and silicone-oil injection in the treatment of proliferative vitreoretinopathy following retinal detachment. Doc Ophthalmol Adv Ophthalmol. 1986;64:109–16.

    CAS  Google Scholar 

  23. Azen SP, Scott IU, Flynn HW, et al. Silicone oil in the repair of complex retinal detachments. A prospective observational multicenter study. Ophthalmology. 1998;105:1587–97.

    CAS  PubMed  Google Scholar 

  24. Lai WW, Yusof W, Lo A, Wong IY, Wong D. Long-term intraocular tamponade with silicone oil. In: Narendran V, Kothar AR, editors. Principles and practice of Vitreoretinal surgery. 1st ed. New Delhi: JP Medical Ltd; 2014. p. 145–50.

    Google Scholar 

  25. Shunmugam M, Shah AN, Hysi PG, Williamson TH. The pattern and distribution of retinal breaks in eyes with rhegmatogenous retinal detachment. Am J Ophthalmol. 2014;157(1):221–6 e1.

    PubMed  Google Scholar 

  26. Pastor JC, de la Rúa ER, Martín F. Proliferative vitreoretinopathy: risk factors and pathobiology. Prog Retin Eye Res. 2002;21(1):127–44.

    PubMed  Google Scholar 

  27. Idrees S, Sridhar J, Kuriyan AE. Proliferative vitreoretinopathy: a review. Int Ophthalmol Clin. 2019 Winter;59(1):221–40.

    PubMed  PubMed Central  Google Scholar 

  28. Shiraki N, Sakimoto S, Sakaguchi H, Nishida K, Nishida K, Kamei M. Vitrectomy without prone positioning for rhegmatogenous retinal detachments in eyes with inferior retinal breaks. PLoS One. 2018;13(1):e0191531.

    PubMed  PubMed Central  Google Scholar 

  29. Abu El-Asrar AM, Al-Kwikbi HF, Kangave D. Prognostic factors after primary vitrectomy and perfluorocarbon liquids for bullous rhegmatogenous retinal detachment. Eur J Ophthalmol. 2009;19(1):107–17.

    CAS  PubMed  Google Scholar 

  30. Ghoraba HH, Ghoraba HH, Heikal MA, Elgouhary SM, Mansour HO, Abdelhafez MA, Zaky AG. Submacular perfluorocarbon liquid: long-term follow-up. Int Ophthalmol 2020.

  31. Winter M, Winter C, Wiechens B. Quantification of intraocular retained perfluorodecalin after macroscopic complete removal. Graefes Arch Clin Exp Ophthalmol. 1999;237:153–6.

    CAS  PubMed  Google Scholar 

  32. Shulman M, Sepah YJ, Chang S, Abrams GW, Do DV, Nguyen QD. Management of retained subretinal perfluorocarbon liquid. Ophthalmic Surg Lasers Imaging Retina. 2013;44(6):577–83.

    PubMed  Google Scholar 

  33. Chang S, Sparrow JR, Iwamoto T, Gershbein A, Ross R, Ortiz R. Experimental studies of tolerance to intravitreal perfluoro-n-octane liquid. Retina. 1991;11(4):367–74.

    CAS  PubMed  Google Scholar 

  34. Eckardt C, Nicolai U, Winter M, Knop E. Experimental intraocular tolerance to liquid perfluorooctane and perfluoropolyether. Retina. 1991;11(4):375–84.

    CAS  PubMed  Google Scholar 

  35. Elsing SH, Fekrat S, Green WR, Chang S, Wajer SD, Haller JA. Clinicopathologic findings in eyes with retained perfluoro-n-octane liquid. Ophthalmology. 2001;108:45–8.

    CAS  PubMed  Google Scholar 

  36. Singh J, Ramaesh K, Wharton SB, Cormack G, Chawla HB. Perfluorodecalin-induced intravitreal inflammation. Retina (Philadelphia, Pa). 2001;21:247–51.

    CAS  Google Scholar 

  37. Wilbanks GA, Apel AJ, Jolly SS, Devenyi RG, Rootman DS. Perfluorodecalin corneal toxicity: five case reports. Cornea. 1996;15:329–34.

    CAS  PubMed  Google Scholar 

  38. Foster RE, Smiddy WS, Alfonso EC, Parrish RK. Secondary glaucoma associated with perfluorophenanthrene. Am J Ophthalmol. 1994;118:253–5.

    CAS  PubMed  Google Scholar 

  39. Kanclerz P, Grzybowski A. Complications associated with the use of expandable gases in vitrectomy. J Ophthalmol. 2018;2018:8606494.

    PubMed  PubMed Central  Google Scholar 

  40. Van Horn DL, Edelhauser HF, Aaberg TM, Pederson HJ. In vivo effects of air and sulfur hexafluoride gas on rabbit corneal endothelium. Investig Ophthalmol. 1972;11(12):1028–36.

    Google Scholar 

  41. Tan CSH, Wee K, Zaw M-D, Lim TH. Anterior chamber gas bubble following pneumatic retinopexy in a young, phakic patient. Clin Exp Ophthalmol. 2011;39(3):276–7.

    PubMed  Google Scholar 

  42. Taher RM, Haimovici R. Anterior chamber gas entrapment after phakic pneumatic retinopexy. Retina. 2001;21(6):681–2.

    CAS  PubMed  Google Scholar 

  43. Han DP, Lewis H, Lambrou FH Jr, Mieler WF, Hartz A. Mechanisms of Intraocuular Pressure Elevation after Pars Plana Vitrectomy. Ophthalmology. 1989;96(9):1357–62.

    CAS  PubMed  Google Scholar 

  44. Chang S, Lincoff HA, Coleman DJ, Fuchs W, Farber ME. Perfluorocarbon gases in vitreous surgery. Ophthalmology. 1985;92(5):651–6.

    CAS  PubMed  Google Scholar 

  45. Chen CJ. Glaucoma after macular hole surgery. Ophthalmology. 1998;105(1):94–9 discussion 99-100.

    CAS  PubMed  Google Scholar 

  46. Modi A, Giridhar A, Gopalakrishnan M. Sulfur hexafluoride (SF6) versus perfluoropropane (C3F8) gas as tamponade in macular hole surgery. Retina. 2017;37(2):283–90.

    CAS  PubMed  Google Scholar 

  47. Yee KMP, Tan S, Lesnik Oberstein SY, Filas B, Nguyen JH, Nguyen-Cuu J, et al. Incidence of cataract surgery after vitrectomy for vitreous opacities. Ophthalmology Retina. 2017;1(2):154–7.

    PubMed  Google Scholar 

  48. Ichhpujani P, Jindal A, Jay Katz L. Silicone oil induced glaucoma: a review. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 2009;247:1585–93.

    CAS  Google Scholar 

  49. Cour AM, Lux A, Heegaard S. Visual loss under silicone oil. Klin Monatsblätter Für Augenheilkd. 2010;227:181–4.

    Google Scholar 

  50. Tyagi M, Basu S. Glue-assisted retinopexy for rhegmatogenous retinal detachments (GuARD): a novel surgical technique for closing retinal breaks. Indian J Ophthalmol. 2019;67(5):677–80.

    PubMed  PubMed Central  Google Scholar 

  51. Haruta M, Arai M, Sueda J, Hirose T, Yamakawa R. Patching retinal breaks with Seprafilm for treating retinal detachments in humans: 9 years of follow-up. Eye. 2017;31:776–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Georgalas I, Petrou P, Koutsandrea C, Papaconstadinou D, Ladas I, Gotzaridis E, et al. Eur J Ophthalmol. 2009;19(2):324–6.

    PubMed  Google Scholar 

  53. Doi M, Refojo MF. Histopathology of rabbit eyes with silicone-fluorosilicone copolymer oil as six months internal retinal tamponade. Exp Eye Res. 1995;61:469–78.

    CAS  PubMed  Google Scholar 

  54. Schatz B, El-Shabrawi Y, Haas A, Langmann G. Adverse side effects with perfluorohexyloctane as a long-term tamponade agent in complicated vitreoretinal surgery. Retina Phila Pa. 2004;24:567–73.

    Google Scholar 

  55. Georgalas I, Ladas I, Tservakis I, Taliantzis S, Gotzaridis E, Papaconstantinou D, et al. Perfluorocarbon liquids in vitreoretinal surgery: a review of applications and toxicity. Cutan Ocul Toxicol. 2011;30(4):251–62.

    CAS  PubMed  Google Scholar 

  56. Levasseur SD, Schendel S, Machuck RW, Dhanda D. High-density silicone oil Densiron-68 as an intraocular tamponade for primary inferior retinal detachments. Retina. 2013;33(3):627–33.

    CAS  PubMed  Google Scholar 

  57. Caporossi T, Franco F, Finocchio L, Barca F, Giansanti F, Tartaro R, et al. Densiron 68 heavy silicone oil in the management of inferior retinal detachment recurrence: analysis on functional and anatomical outcomes and complications. Int J Ophthalmol. 2019;12(4):615–20.

    PubMed  PubMed Central  Google Scholar 

  58. Peyman GA, Conway MD, Karacorlu M, et al. Evaluation of silicone gel as a long-term vitreous substitute in non-human primates. Ophthalmic Surg. 1992;23:811–7.

    CAS  PubMed  Google Scholar 

  59. Liang CP, Peyman GA, Serracarbassa P, Calixto N, Chow AA, Rao P. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int Ophthalmol. 1998;22:13–8.

    CAS  PubMed  Google Scholar 

  60. Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29:409–20.

    CAS  PubMed  Google Scholar 

  61. Chirila TV, Sharp C, Moore SR, et al. Synthetic hydrogel as an artificial vitreous body. A one-year animal study of its effects on the retina. Cell Mater. 1995;5:83–96.

    CAS  Google Scholar 

  62. Fernandez-Vigo J, Refojo MF, Verstraeten T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina. 1990;10:148–52.

    CAS  PubMed  Google Scholar 

  63. Crafoord S, Andreasson S, Ghosh F. Experimental vitreous tamponade using polyalkylimide hydrogel. Graefes Arch Clin Exp Ophthalmol. 2011;249:1167–74.

    CAS  PubMed  Google Scholar 

  64. De Jong C, Bali E, Libert J, et al. ADCON-L hydrogel as a vitreous substitute: preliminary results. Bull Soc Belge Ophtalmol. 2000:71–5.

  65. Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, et al. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr Eye Res. 2006;31(7–8):599–606.

    CAS  PubMed  Google Scholar 

  66. Katagiri Y, Iwasaki T, Ishikawa T, Yamakawa N, Suzuki H, Usui M. Application of thermo-setting gel as artificial vitreous. Jpn J Ophthalmol. 2005;49(6):491–6.

    PubMed  Google Scholar 

  67. Hayashi K, Okamoto F, Hoshi S, Katashima T, Zujur DC, Li X, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng. 2017;1:0044.

    CAS  Google Scholar 

  68. Liu Z, Liow SS, Lai SL, Alli-Shaik A, Holder GE, Parikh BH, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nat Biomed Eng. 2019;3:598–610.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avnish Deobhakta.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deobhakta, A., Rosen, R. Retinal Tamponades: Current Uses and Future Technologies. Curr Ophthalmol Rep 8, 144–151 (2020). https://doi.org/10.1007/s40135-020-00247-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-020-00247-9

Keywords

Navigation