Skip to main content
Log in

Optoelectronic Devices for Vision Restoration

  • Retina (R Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal is providing an update to the latest research surrounding optoelectronic devices, highlighting key studies and benefits and limitations of each device.

Recent Findings

The Argus II demonstrated long-term safety after a 5-year follow-up. Due to lack of tack fixation, subretinal implants appear to displace over time. PRIMA’s completed primate trial showed initial safety and potential for improved vision, resulting in ongoing clinical trials; Bionic Vision Australia developed a new 44-electrode suprachoroidal device currently in a clinical trial. Orion (cortical stimulation) is currently undergoing a clinical trial to demonstrate safety.

Summary

Devices using external camera for images are unaffected by corneal or lens opacities but disconnect eye movements from image perception, while the opposite is true for implants directly detecting light. Visual acuity provided by devices is more complicated than implant electrode density, and new devices aim to target this with innovative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dowling J. Current and future prospects for optoelectronic retinal prostheses. Eye. 2009;23:1999–2005. https://doi.org/10.1038/eye.2008.385.

    Article  PubMed  CAS  Google Scholar 

  2. Wang AL, Knight DK, Vu TT, Mehta MC. Retinitis pigmentosa: review of current treatment. Int Ophthalmol Clin. 2019;59:263–80. https://doi.org/10.1097/IIO.0000000000000256.

    Article  PubMed  CAS  Google Scholar 

  3. Frontiers | The Argus-II Retinal Prosthesis Implantation; From the Global to Local Successful Experience | Neuroscience n.d. https://www.frontiersin.org/articles/10.3389/fnins.2018.00584/full (accessed February 14, 2020).

  4. Petoe MA, Titchener SA, Shivdasani MN, Nayagam DA, Epp SB, Villalobos J, et al. A 44 channel suprachoroidal retinal prosthesis: initial psychophysical results. Invest Ophthalmol Vis Sci. 2019;60:4993–3.

  5. Assessment of the electronic retinal implant Alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa n.d. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5818267/ (accessed February 16, 2020).

  6. Prévot P-H, Gehere K, Arcizet F, Akolkar H, Khoei MA, Blaize K, et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat Biomed Eng. 2019. https://doi.org/10.1038/s41551-019-0484-2This study demonstrated safety and potential improvement in visual function of PRIMA in non-human primates, up to two years after implantation. In doing so, it paved the way for initial clinical trials to be performed.

  7. Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics. Neurotherapeutics. 2019;16:134–43. https://doi.org/10.1007/s13311-018-0660-1.

    Article  PubMed  CAS  Google Scholar 

  8. Markowitz M, Rankin M, Mongy M, Patino BE, Manusow J, Devenyi RG, et al. Rehabilitation of lost functional vision with the Argus II retinal prosthesis. Can J Ophthalmol. 2018;53:14–22. https://doi.org/10.1016/j.jcjo.2017.12.001.

  9. Duncan JL, Richards TP, Arditi A, da Cruz L, Dagnelie G, Dorn JD, et al. Improvements in vision-related quality of life in blind patients implanted with the Argus II epiretinal prosthesis. Clin Exp Optom. 2017;100:144–50. https://doi.org/10.1111/cxo.12444.

  10. Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, et al. Interim results from the international trial of second Sight’s visual prosthesis. Ophthalmology. 2012;119:779–88. https://doi.org/10.1016/j.ophtha.2011.09.028.

  11. Dagnelie G, Jeter PE, Adeyemo K, Rozanski C, Nkodo A-F, Massof RW. Psychometric properties of the PLoVR ultra-low vision (ULV) questionnaire. Invest Ophthalmol Vis Sci. 2014;55:2150–0.

  12. One-year safety and performance assessment of the Argus II retinal prosthesis: a postapproval study | Medical Devices and Equipment | JAMA Ophthalmology | JAMA Network n.d. https://jamanetwork.com/journals/jamaophthalmology/article-abstract/2734219 (accessed February 15, 2020).

  13. da Cruz L, Dorn JD, Humayun MS, Dagnelie G, Handa J, Barale P-O, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology. 2016;123:2248–54. https://doi.org/10.1016/j.ophtha.2016.06.049.

  14. Lin T-C, Wang L-C, Yue L, Zhang Y, Falabella P, Zhu D, et al. Histopathologic assessment of optic nerves and retina from a patient with chronically implanted Argus II retinal prosthesis system. Transl Vis Sci Technol. 2019;8:31–1. https://doi.org/10.1167/tvst.8.3.31This study examined the retinal histology of an Argus II-implanted patient, finding increased optic nerve atrophy, but no increased damage in the location of the retina corresponding to the array itself, consistent with long-term safety.

  15. Seuthe AM, Haus A, Januschowski K, Szurman P. First simultaneous explantation and re-implantation of an Argus II retinal prosthesis system. Ophthalmic Surg Lasers Imaging Retina. 2019;50:462–5. https://doi.org/10.3928/23258160-20190703-10This study demonstrated the feasibility of exchanging an epiretinal implant (Argus II) as well as the extensive surgical procedure and risks involved in doing so.

    Article  PubMed  Google Scholar 

  16. Rizzo S, Barale P-O, Ayello-Scheer S, Devenyi RG, Delyfer M-N, Korobelnik J-F, et al. ADVERSE EVENTS OF THE ARGUS II RETINAL PROSTHESIS: incidence, causes, and best practices for managing and preventing Conjunctival Erosion. Retina Phila Pa. 2020;40:303–11. https://doi.org/10.1097/IAE.0000000000002394.

    Article  Google Scholar 

  17. Sommerhalder J, Pérez FA. Prospects and Limitations of Spatial Resolution. In: Gabel VP, editor. Artif. Vis. Clin. Guide. Cham: Springer International Publishing; 2017. p. 29–45. https://doi.org/10.1007/978-3-319-41876-6_4.

    Chapter  Google Scholar 

  18. Argus II Retinal prosthesis system dry AMD feasibility study protocol - Full Text View - ClinicalTrials.gov n.d. https://clinicaltrials.gov/ct2/show/NCT02227498 (accessed February 25, 2020).

  19. Muqit MMK, Velikay-Parel M, Weber M, Dupeyron G, Audemard D, Corcostegui B, et al. Six-month safety and efficacy of the intelligent retinal implant system II device in retinitis pigmentosa. Ophthalmology. 2019;126:637–9. https://doi.org/10.1016/j.ophtha.2018.11.010This clinical trial of IRIS II demonstrated reasonable safety at 6 months with improved visual function in several metrics, although follow-up studies will need to be performed to demonstrate improvements in visual acuity.

    Article  PubMed  Google Scholar 

  20. Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, et al. Event-based Vision: A Survey. ArXiv190408405 Cs 2019.

  21. Surgical feasibility and biocompatibility of the OptoEpiret retinal stimulator | IOVS | ARVO Journals n.d. https://iovs.arvojournals.org/article.aspx?articleid=2744395 (accessed February 17, 2020).

  22. Waschkowski F, Hesse S, Rieck AC, Lohmann T, Brockmann C, Laube T, et al. Development of very large electrode arrays for epiretinal stimulation (VLARS). Biomed Eng Online. 2014;13:11. https://doi.org/10.1186/1475-925X-13-11.

  23. Schaffrath K, Kokozinski R, Waschkowski F, Viga R, Mokwa W, Raffelberg P, et al. Biocompatibility of photodiode structures used for epiretinal prosthesis extended by an integrated epiretinal recording (OPTO-EPIRET). IOVS. n.d..

  24. Zrenner E, Bartz-Schmidt KU, Besch D, Gekeler F, Koitschev A, Sachs HG, et al. The subretinal implant ALPHA: implantation and functional results. In: Gabel VP, editor. Artif. Vis. Clin. Guide. Cham: Springer International Publishing; 2017. p. 65–83. https://doi.org/10.1007/978-3-319-41876-6_6.

    Chapter  Google Scholar 

  25. Hafed ZM, Stingl K, Bartz-Schmidt K-U, Gekeler F, Zrenner E. Oculomotor behavior of blind patients seeing with a subretinal visual implant. Vis Res. 2016;118:119–31. https://doi.org/10.1016/j.visres.2015.04.006.

    Article  PubMed  Google Scholar 

  26. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci. 2013;280:20130077. https://doi.org/10.1098/rspb.2013.0077.

  27. Daschner R, Greppmaier U, Kokelmann M, Rudorf S, Rudorf R, Schleehauf S, et al. Laboratory and clinical reliability of conformally coated subretinal implants. Biomed Microdevices. 2017;19:7. https://doi.org/10.1007/s10544-017-0147-6.

  28. Shepherd RK, Shivdasani MN, Nayagam DAX, Williams CE, Blamey PJ. Visual prostheses for the blind. Trends Biotechnol. 2013;31:562–71. https://doi.org/10.1016/j.tibtech.2013.07.001.

    Article  PubMed  CAS  Google Scholar 

  29. Stingl K, Schippert R, Bartz-Schmidt KU, Besch D, Cottriall CL, Edwards TL, et al. Interim results of a multicenter trial with the new electronic subretinal implant Alpha AMS in 15 patients blind from inherited retinal degenerations. Front Neurosci. 2017;11. https://doi.org/10.3389/fnins.2017.00445This clinical trial testing alpha AMS demonstrated that while there were improvements to vision function and measurable visual acuity, the device did not meet expectations. Ultimately, the results from this trial are what led to the discontinuation of the alpha IMS/AMS devices.

  30. Subretinal electronic chips allow blind patients to read letters and combine them to words | Proceedings of the Royal Society B: Biological Sciences n.d. https://royalsocietypublishing.org/doi/full/10.1098/rspb.2010.1747 (accessed February 16, 2020).

  31. Eiber CD, Lovell NH, Suaning GJ. Attaining higher resolution visual prosthetics: a review of the factors and limitations. J Neural Eng. 2013;10:011002. https://doi.org/10.1088/1741-2560/10/1/011002.

    Article  PubMed  Google Scholar 

  32. Kuehlewein L, Troelenberg N, Stingl K, Schleehauf S, Kusnyerik A, Jackson TL, et al. Changes in microchip position after implantation of a subretinal vision prosthesis in humans. Acta Ophthalmol. 2019;97:e871–6. https://doi.org/10.1111/aos.14077This study demonstrated a potential downside to subretinal implants compared to epiretinal implants. The lack of tack fixation in subretinal implants allows for displacement to occur over time, which may affect the long-term visual function and acuity of patients with these implants.

    Article  PubMed  Google Scholar 

  33. Retina Implant - Your Expert for retinitis pigmentosa - Retina Implant n.d. https://www.retina-implant.de/en/ (accessed February 16, 2020).

  34. Improved Focalization of Electrical Microstimulation Using Microelectrode Arrays: A Modeling Study n.d. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004828 (accessed February 16, 2020).

  35. Bendali A, Rousseau L, Lissorgues G, Scorsone E, Djilas M, Dégardin J, et al. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials. 2015;67:73–83. https://doi.org/10.1016/j.biomaterials.2015.07.018.

  36. Lorach H, Goetz G, Smith R, Lei X, Mandel Y, Kamins T, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med. 2015;21:476–82. https://doi.org/10.1038/nm.3851.

  37. Ayton LN, Guymer RH, Luu CD. Choroidal thickness profiles in retinitis pigmentosa. Clin Exp Ophthalmol. 2013;41:396–403. https://doi.org/10.1111/j.1442-9071.2012.02867.x.

    Article  PubMed  Google Scholar 

  38. Cicione R, Shivdasani MN, Fallon JB, Luu CD, Allen PJ, Rathbone GD, et al. Visual cortex responses to suprachoroidal electrical stimulation of the retina: effects of electrode return configuration. J Neural Eng. 2012;9:036009. https://doi.org/10.1088/1741-2560/9/3/036009.

  39. Ayton LN, Blamey PJ, Guymer RH, Luu CD, Nayagam DAX, Sinclair NC, et al. First-in-human trial of a novel Suprachoroidal retinal prosthesis. PLoS One. 2014;9. https://doi.org/10.1371/journal.pone.0115239.

  40. Abbott CJ, Nayagam DAX, Luu CD, Epp SB, Williams RA, Salinas-LaRosa CM, et al. Safety studies for a 44-channel Suprachoroidal retinal prosthesis: a chronic passive study. Invest Ophthalmol Vis Sci. 2018;59:1410–24. https://doi.org/10.1167/iovs.17-23086This study demonstrated the safety of implantation for the novel Bionic Vision Australia suprachoroidal implant in felines and was a necessary step towards starting the current ongoing clinical trials.

    Article  PubMed  CAS  Google Scholar 

  41. Retinotopic to spatiotopic mapping in blind patients implanted with the Argus II retinal prosthesis. - PubMed - NCBI n.d. https://www.ncbi.nlm.nih.gov/pubmed/28114567 (accessed February 17, 2020).

  42. He Y, Huang NT, Caspi A, Roy A, Montezuma SR. Trade-off between field-of-view and resolution in the thermal-integrated Argus II system. Transl Vis Sci Technol. 2019;8:29–9. https://doi.org/10.1167/tvst.8.4.29.

  43. Sadeghi R, Barry M, Gibson P, Caspi A, Roy A, Dagnelie G. Depth discrimination in Argus II wearers using a stereo sensor based on two head-mounted cameras. Invest Ophthalmol Vis Sci. 2019;60:4975–5.

  44. Pezaris JS, Reid RC. Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci U S A. 2007;104:7670–5. https://doi.org/10.1073/pnas.0608563104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Brelén ME, De Potter P, Gersdorff M, Cosnard G, Veraart C, Delbeke J. Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis. Case Rep J Neurosurg. 2006;104:593–7. https://doi.org/10.3171/jns.2006.104.4.593.

    Article  Google Scholar 

Download references

Funding

This research is funded in part by NIH Center Core Grants P30 EY001319 (Bethesda, Maryland), Research to Prevent Blindness Unrestricted Grant (New York, New York).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay E. Kuriyan.

Ethics declarations

Conflict of Interest

Victor Wang declares no potential conflicts of interest.

Ajay E. Kuriyan reports a grant from Second Sight for a clinical trial, a grant from Genentech, and personal fees from Allergen, Genentech, Regeneron, Bausch Health, and Alimera Sciences.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, V., Kuriyan, A.E. Optoelectronic Devices for Vision Restoration. Curr Ophthalmol Rep 8, 69–77 (2020). https://doi.org/10.1007/s40135-020-00232-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-020-00232-2

Keywords

Navigation