Skip to main content

Advertisement

Log in

Decoding PERG: a Neuro-Ophthalmic Retinal Ganglion Cell Function Review

  • Retina (R Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Currently, the clinical evaluation of neuro-ophthalmologic diseases is mainly focused on identifying stages where structural or functional damage occurs. Recognition of retinal ganglion cell (RGC) functional patterns as well as monitoring RGC dysfunction can be performed using steady-state pattern electroretinogram (PERG). The analysis of the amplitude and latency shift aids on providing information on early damage or monitoring of the RGC, allowing for prompt clinical intervention and management modification, potentially changing the natural history of the disease. The purpose of this article is to review the latest findings in PERG, in early manifest glaucoma, non-arteritic ischemic optic neuropathy, multiple sclerosis with unilateral recovered optic neuritis, and its fellow eyes.

Recent Findings

The steady-state PERG responses provide new and early specific information in neuro-ophthalmic diseases affecting the inner retina.

Summary

Steady-state PERG presents specific amplitude and latency outcomes based on the neuro-ophthalmic disease affecting the inner retina, allowing early recognition of changes at the level of RGC and the degree of RGC dysfunction. In addition, PERG alterations may be induced in healthy subjects as well as susceptible eyes using different stress tests such as head-down tilting or water-drinking tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015;141:164–70. https://doi.org/10.1016/j.exer.2015.05.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Porciatti V, Ventura LM. The PERG as a tool for early detection and monitoring of glaucoma. Current Ophthalmology Reports. 2017;5(1):7–13. https://doi.org/10.1007/s40135-017-0128-1.

    Article  Google Scholar 

  3. Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001;20(4):531–61.

    Article  CAS  PubMed  Google Scholar 

  4. Bach M, Brigell MG, Hawlina M, Holder GE, Johnson MA, McCulloch DL, et al. ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol. 2013;126(1):1–7. https://doi.org/10.1007/s10633-012-9353-y.

    Article  PubMed  Google Scholar 

  5. Hood DC, Xu L, Thienprasiddhi P, Greenstein VC, Odel JG, Grippo TM, et al. The pattern electroretinogram in glaucoma patients with confirmed visual field deficits. Invest Ophthalmol Vis Sci. 2005;46(7):2411–8. https://doi.org/10.1167/iovs.05-0238.

    Article  PubMed  Google Scholar 

  6. •• Monsalve P, Triolo G, Toft-Nielsen J, Bohorquez J, Henderson AD, Delgado R, et al. Next generation PERG method: expanding the response dynamic range and capturing response adaptation. Transl Vis Sci Technol, This study compares the new steady state PERG method to a previously validated PERG method. 2017;6(3):5. https://doi.org/10.1167/tvst.6.3.5.

  7. •• Monsalve P, Ren S, Triolo G, Vazquez L, Henderson AD, Kostic M, et al. Steady-state PERG adaptation: a conspicuous component of response variability with clinical significance. Doc Ophthalmol. 2018;136(3):157–64. https://doi.org/10.1007/s10633-018-9633-2 This study describes the within test variability of the steady state PERG reponse and describes its significant physiological and clinical implications.

    Article  CAS  PubMed  Google Scholar 

  8. Porciatti V, Sartucci F. Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain. 1996;119(Pt 3):723–40.

    Article  PubMed  Google Scholar 

  9. Jansonius NM, Kooijman AC. The effect of defocus on edge contrast sensitivity. Ophthalmic Physiol Opt. 1997;17(2):128–32.

    Article  CAS  PubMed  Google Scholar 

  10. Digre KB, Evangelou N, Konz D, Esiri MM, et al. Size-selective neuronal changes in the anterior optic pathways suggest a differential susceptibility to injury in multiple sclerosis. J Neuroophthalmol. 2002;22(2):143. https://doi.org/10.1097/00041327-200206000-00040.

    Article  Google Scholar 

  11. Centofanti M, Fogagnolo P, Oddone F, Orzalesi N, Vetrugno M, Manni G, et al. Learning effect of Humphrey matrix frequency doubling technology perimetry in patients with ocular hypertension. J Glaucoma. 2008;17(6):436–41. https://doi.org/10.1097/IJG.0b013e31815f531d.

    Article  PubMed  Google Scholar 

  12. Porciatti V, Sorokac N, Buchser W. Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci. 2005;46(4):1296–302. https://doi.org/10.1167/iovs.04-1242.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Porciatti V, Ventura LM. Adaptive changes of inner retina function in response to sustained pattern stimulation. Vis Res. 2009;49(5):505–13. https://doi.org/10.1016/j.visres.2008.12.001.

    Article  PubMed  Google Scholar 

  14. Porciatti V, Bosse B, Parekh PK, Shif OA, Feuer WJ, Ventura LM. Adaptation of the steady-state PERG in early glaucoma. J Glaucoma. 2014;23(8):494–500. https://doi.org/10.1097/IJG.0b013e318285fd95.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bach M. Electrophysiological approaches for early detection of glaucoma. Eur J Ophthalmol. 2001;11(Suppl 2):S41–9.

    Article  PubMed  Google Scholar 

  16. Trick GL. Retinal potentials in patients with primary open-angle glaucoma: physiological evidence for temporal frequency tuning deficits. Invest Ophthalmol Vis Sci. 1985;26(12):1750–8.

    CAS  PubMed  Google Scholar 

  17. Hattenhauer MG, Leavitt JA, Hodge DO, Grill R, Gray DT. Incidence of nonarteritic anteripr ischemic optic neuropathy. Am J Ophthalmol. 1997;123(1):103–7. https://doi.org/10.1016/s0002-9394(14)70999-7.

    Article  CAS  Google Scholar 

  18. Parisi V, Gallinaro G, Ziccardi L, Coppola G. Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol. 2008;15(8):839–45. https://doi.org/10.1111/j.1468-1331.2008.02200.x.

    Article  CAS  PubMed  Google Scholar 

  19. Kidd DP, Plant GT. Chapter 6 Optic Neuritis. Blue Books of Neurology. 2008. p. 134–52.

  20. Plant GT. Optic neuritis and multiple sclerosis. Curr Opin Neurol. 2008;21(1):16–21. https://doi.org/10.1097/WCO.0b013e3282f419ca.

    Article  PubMed  Google Scholar 

  21. Petzold A, Wattjes MP, Costello F, Flores-Rivera J, Fraser CL, Fujihara K, et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol. 2014;10(8):447–58. https://doi.org/10.1038/nrneurol.2014.108.

    Article  PubMed  Google Scholar 

  22. Szilasiová J, Klímová E, Veselá D. Optic neuritis as the first sign of multiple sclerosis. Cesk Slov Oftalmol. 2002;58(4):259–64.

    PubMed  Google Scholar 

  23. Lizrova Preiningerova J, Grishko A, Sobisek L, Andelova M, Benova B, Kucerova K, et al. Do eyes with and without optic neuritis in multiple sclerosis age equally? Neuropsychiatr Dis Treat. 2018;14:2281–5. https://doi.org/10.2147/NDT.S169638.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hokazono K, Raza AS, Oyamada MK, Hood DC, Monteiro MLR. Pattern electroretinogram in neuromyelitis optica and multiple sclerosis with or without optic neuritis and its correlation with FD-OCT and perimetry. Doc Ophthalmol. 2013;127(3):201–15. https://doi.org/10.1007/s10633-013-9401-2.

    Article  PubMed  Google Scholar 

  25. Klistorner A, Sriram P, Vootakuru N, Wang C, Barnett MH, Garrick R, et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology. 2014;82(24):2165–72. https://doi.org/10.1212/WNL.0000000000000522.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Akçam HT, Capraz IY, Aktas Z, Batur Caglayan HZ, Ozhan Oktar S, Hasanreisoglu M, et al. Multiple sclerosis and optic nerve: an analysis of retinal nerve fiber layer thickness and color Doppler imaging parameters. Eye. 2014;28(10):1206–11. https://doi.org/10.1038/eye.2014.178.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Janaky M, Janossy A, Horvath G, Benedek G, Braunitzer G. VEP and PERG in patients with multiple sclerosis, with and without a history of optic neuritis. Documenta ophthalmologica Advances in ophthalmology. 2017;134(3):185–93. https://doi.org/10.1007/s10633-017-9589-7.

    Article  CAS  PubMed  Google Scholar 

  28. Rodriguez-Mena D, Almarcegui C, Dolz I, Herrero R, Bambo MP, Fernandez J, et al. Electropysiologic evaluation of the visual pathway in patients with multiple sclerosis. J Clin Neurophysiol. 2013;30(4):376–81. https://doi.org/10.1097/WNP.0b013e31829d75f7.

    Article  PubMed  Google Scholar 

  29. Fraser CL, Holder GE. Electroretinogram findings in unilateral optic neuritis. Documenta ophthalmologica Advances in ophthalmology. 2011;123(3):173–8. https://doi.org/10.1007/s10633-011-9294-x.

    Article  PubMed  Google Scholar 

  30. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci. 1999;40(11):2520–7.

    CAS  PubMed  Google Scholar 

  31. Falsini B, Porrello G, Porciatti V, Fadda A, Salgarello T, Piccardi M. The spatial tuning of steady state pattern electroretinogram in multiple sclerosis. Eur J Neurol. 1999;6(2):151–62.

    Article  CAS  PubMed  Google Scholar 

  32. Falsini B, Porciatti V. The temporal frequency response function of pattern ERG and VEP: changes in optic neuritis. Electroencephalogr Clin Neurophysiol. 1996;100(5):428–35.

    Article  CAS  PubMed  Google Scholar 

  33. •• Monsalve P, Ren S, Jiang H, Wang J, Kostic M, Gordon P, et al. Retinal ganglion cell function in recovered optic neuritis: faster is not better. Clin Neurophysiol, This study describes the steady state PERG response in patients with multiple sclerosis and recovered optice neuritis. 2018;129(9):1813–8. https://doi.org/10.1016/j.clinph.2018.06.012.

  34. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–7. https://doi.org/10.1136/bjo.2005.081224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012;32(4):354–8. https://doi.org/10.1097/WNO.0b013e3182745600.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Banitt MR, Ventura LM, Feuer WJ, Savatovsky E, Luna G, Shif O, et al. Progressive loss of retinal ganglion cell function precedes structural loss by several years in glaucoma suspects. Invest Ophthalmol Vis Sci. 2013;54(3):2346–52. https://doi.org/10.1167/iovs.12-11026.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Karaśkiewicz J, Drobek-Słowik M, Lubiński W. Pattern electroretinogram (PERG) in the early diagnosis of normal-tension preperimetric glaucoma: a case report. Doc Ophthalmol. 2013;128(1):53–8. https://doi.org/10.1007/s10633-013-9414-x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bach M, Hoffmann MB. Update on the pattern electroretinogram in glaucoma. Optom Vis Sci. 2008;85(6):386–95. https://doi.org/10.1097/OPX.0b013e318177ebf3.

    Article  PubMed  Google Scholar 

  39. Ventura LM, Porciatti V, Ishida K, Feuer WJ, Parrish RK 2nd. Pattern electroretinogram abnormality and glaucoma. Ophthalmology. 2005;112(1):10–9. https://doi.org/10.1016/j.ophtha.2004.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bode SF, Jehle T, Bach M. Pattern electroretinogram in glaucoma suspects: new findings from a longitudinal study. Invest Ophthalmol Vis Sci. 2011;52(7):4300–6. https://doi.org/10.1167/iovs.10-6381.

    Article  PubMed  Google Scholar 

  41. Porciatti V, Feuer WJ, Monsalve P, Triolo G, Vazquez L, McSoley J, et al. Head-down posture in glaucoma suspects induces changes in IOP, systemic pressure, and PERG that predict future loss of optic nerve tissue. J Glaucoma. 2017;26(5):459–65. https://doi.org/10.1097/ijg.0000000000000648.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fadda A, Di Renzo A, Martelli F, Marangoni D, Batocchi AP, Giannini D, et al. Reduced habituation of the retinal ganglion cell response to sustained pattern stimulation in multiple sclerosis patients. Clin Neurophysiol. 2013;124(8):1652–8. https://doi.org/10.1016/j.clinph.2013.03.001.

    Article  PubMed  Google Scholar 

  43. Yücel YH. Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol. 2000;118(3):378–84. https://doi.org/10.1001/archopht.118.3.378.

    Article  PubMed  Google Scholar 

  44. La Morgia C, Di Vito L, Carelli V, Carbonelli M. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol. 2017;8. https://doi.org/10.3389/fneur.2017.00710.

  45. Gameiro G, Monsalve P, Golubev I, Ventura L, Porciatti V. Neurovascular changes associated with the water drinking test. J Glaucoma. 2018;27(5):429–32. https://doi.org/10.1097/IJG.0000000000000898.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Trick GL, Nesher R, Cooper DG, Shields SM. The human pattern ERG: alteration of response properties with aging. Optom Vis Sci. 1992;69(2):122–8.

    Article  CAS  PubMed  Google Scholar 

  47. Porciatti V, Burr DC, Morrone MC, Fiorentini A. The effects of aging on the pattern electroretinogram and visual evoked potential in humans. Vis Res. 1992;32(7):1199–209.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by NIH Center Core Grant R43EY023460 and Research to Prevent Blindness Unrestricted Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Monsalve.

Ethics declarations

Conflict of Interest

Pedro Monsalve declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Retina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monsalve, P. Decoding PERG: a Neuro-Ophthalmic Retinal Ganglion Cell Function Review. Curr Ophthalmol Rep 7, 51–58 (2019). https://doi.org/10.1007/s40135-019-00199-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-019-00199-9

Keywords

Navigation