Skip to main content

Advertisement

Log in

Brachytherapy in Neovascular AMD

  • Therapies in Age-Related Macular Degeneration (R. Goldhardt, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Neovascular age-related macular degeneration (AMD) has a complex pathophysiology, and although anti-VEGF therapy has been one of the most significant and successful advances, it is not effective for all patients with neovascular AMD. The potential role of radiation in the management of neovascular AMD has been suggested for several years. While previous work focused on the role of radiation alone, recent trials have evaluated the role of ionizing radiation as a synergistic treatment with anti-VEGF drugs, with endpoints being to reduce choroidal neovascular lesions faster, preserve visual acuity, and extend the treatment interval between injections. We review the current evidence available for the safety and efficacy of radiation in conjunction with anti-VEGF treatment for neovascular AMD delivered using three approaches—epimacular brachytherapy involving a pars plana vitrectomy (Vidion Neovista, Inc., Newark, CA, USA), episcleral brachytherapy without a pars plana vitrectomy (Salutaris Medical Devices, Tucson, AZ), and low-voltage stereotactic radiotherapy (IRay, Oraya Therapeutics, Inc., Newark, CA, USA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kawasaki R, Yasuda M, Song SJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117(5):921–7.

    Article  PubMed  Google Scholar 

  2. Wong TY, Chakravarthy U, Klein R, et al. The natural history and prognosis of neovascular age-related macular degeneration: a systematic review of the literature and meta-analysis. Ophthalmology. 2008;115(1):116–26.

    Article  PubMed  Google Scholar 

  3. Congdon N, O’Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol. 2004;122(4):477–85.

    Article  PubMed  Google Scholar 

  4. Singer M. Advances in the management of macular degeneration. F1000 Prime Rep. 2014;6:29.

    Article  Google Scholar 

  5. Friedman DS, O’Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122(4):564–72.

    Article  PubMed  Google Scholar 

  6. Seddon JM, Cote J, Davis N, Rosner B. Progression of age-related macular degeneration: association with body mass index, waist circumference, and waist-hip ratio. Arch Ophthalmol. 2003;121(6):785–92.

    Article  PubMed  Google Scholar 

  7. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–16.

    Article  PubMed  Google Scholar 

  8. Bressler NM, Doan QV, Varma R, et al. Estimated cases of legal blindness and visual impairment avoided using ranibizumab for choroidal neovascularization: non-Hispanic white population in the United States with age-related macular degeneration. Arch Ophthalmol. 2011;129(6):709–17.

    PubMed  Google Scholar 

  9. Group VISiONCT, D’Amico DJ, Masonson HN, et al. Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology. 2006;113(6):992–1001 e1006.

    Article  Google Scholar 

  10. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 2006;5(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  11. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrara N, Damico L, Shams N, Lowman H, Kim R. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–70.

    Article  PubMed  Google Scholar 

  13. Browning DJ, Kaiser PK, Rosenfeld PJ, Stewart MW. Aflibercept for age-related macular degeneration: a game-changer or quiet addition? Am J Ophthalmol. 2012;154(2):222–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rosenfeld PJ. New treatments for age-related macular degeneration. Lancet. 2007;370(9597):1479 author reply 1480.

    Article  PubMed  Google Scholar 

  15. Group CR, Martin DF, Maguire MG, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364(20):1897–908.

    Article  Google Scholar 

  16. Chakravarthy U, Houston RF, Archer DB. Treatment of age-related subfoveal neovascular membranes by teletherapy: a pilot study. Br J Ophthalmol. 1993;77(5):265–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Silva RA, Moshfeghi AA, Kaiser PK, Singh RP, Moshfeghi DM. Radiation treatment for age-related macular degeneration. Semin Ophthalmol. 2011;26(3):121–30.

    Article  PubMed  Google Scholar 

  18. Flaxel CJ. Use of radiation in the treatment of age-related macular degeneration. Ophthalmol Clin North Am. 2002;15(4):437–44.

    Article  PubMed  Google Scholar 

  19. Haas A, Prettenhofer U, Stur M, et al. Morphologic characteristics of disciform scarring after radiation treatment for age-related macular degeneration. Ophthalmology. 2000;107(7):1358–63.

    Article  CAS  PubMed  Google Scholar 

  20. Finger PT, Chakravarthy U, Augsburger JJ. Radiotherapy and the treatment of age-related macular degeneration. External beam radiation therapy is effective in the treatment of age-related macular degeneration. Arch Ophthalmol. 1998;116(11):1507–11.

    Article  CAS  PubMed  Google Scholar 

  21. Kim IK, Gragoudas ES. Radiation therapy for neovascular age-related macular degeneration revisited. Br J Ophthalmol. 2009;93(3):279–80.

    Article  PubMed  Google Scholar 

  22. Bellmann C, Unnebrink K, Rubin GS, Miller D, Holz FG. Visual acuity and contrast sensitivity in patients with neovascular age-related macular degeneration. Results from the Radiation Therapy for Age-Related Macular Degeneration (RAD-) Study. Graefe’s Arch Clin Exp Ophthalmol. 2003;241(12):968–74.

    Article  Google Scholar 

  23. Bergink GJ, Deutman AF, van den Broek JF, van Daal WA, van der Maazen RW. Radiation therapy for subfoveal choroidal neovascular membranes in age-related macular degeneration. A pilot study. Graefe’s Arch Clin Exp Ophthalmol. 1994;232(10):591–8.

    Article  CAS  Google Scholar 

  24. A prospective, randomized, double-masked trial on radiation therapy for neovascular age-related macular degeneration (RAD Study). Radiation therapy for age-related macular degeneration. Ophthalmology. 1999;106(12):2239–2247.

  25. Kirwan JF, Constable PH, Murdoch IE, Khaw PT. Beta irradiation: new uses for an old treatment: a review. Eye. 2003;17(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  26. Rombouts C, Aerts A, Beck M, et al. Differential response to acute low dose radiation in primary and immortalized endothelial cells. Int J Radiat Biol. 2013;89(10):841–50.

    Article  CAS  PubMed  Google Scholar 

  27. Grossniklaus HE, Martinez JA, Brown VB, et al. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol. 1992;114(4):464–72.

    Article  CAS  PubMed  Google Scholar 

  28. Eissner G, Kohlhuber F, Grell M, et al. Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood. 1995;86(11):4184–93.

    CAS  PubMed  Google Scholar 

  29. Archer DB, Amoaku WM, Gardiner TA. Radiation retinopathy: clinical, histopathological, ultrastructural and experimental correlations. Eye. 1991;5(Pt 2):239–51.

    Article  PubMed  Google Scholar 

  30. Rubin DB, Drab EA, Kang HJ, Baumann FE, Blazek ER. WR-1065 and radioprotection of vascular endothelial cells. I. Cell proliferation, DNA synthesis and damage. Radiat Res. 1996;145(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  31. De Gowin RL, Lewis LJ, Hoak JC, Mueller AL, Gibson DP. Radiosensitivity of human endothelial cells in culture. J Lab Clin Med. 1974;84(1):42–8.

    PubMed  Google Scholar 

  32. Krishnan L, Krishnan EC, Jewell WR. Immediate effect of irradiation on microvasculature. Int J Radiat Oncol Biol Phys. 1988;15(1):147–50.

    Article  CAS  PubMed  Google Scholar 

  33. Mooteri SN, Podolski JL, Drab EA, et al. WR-1065 and radioprotection of vascular endothelial cells. II. Morphology. Radiat Res. 1996;145(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  34. Rosander K, Zackrisson B. DNA damage in human endothelial cells after irradiation in anoxia. Acta Oncol. 1995;34(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  35. Verheij M, Koomen GC, van Mourik JA, Dewit L. Radiation reduces cyclooxygenase activity in cultured human endothelial cells at low doses. Prostaglandins. 1994;48(6):351–66.

    Article  CAS  PubMed  Google Scholar 

  36. Chakravarthy U, Gardiner TA, Archer DB, Maguire CJ. A light microscopic and autoradiographic study of non-irradiated and irradiated ocular wounds. Curr Eye Res. 1989;8(4):337–48.

    Article  CAS  PubMed  Google Scholar 

  37. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  38. Gunduz K, Shields CL, Shields JA, Cater J, Freire JE, Brady LW. Radiation retinopathy following plaque radiotherapy for posterior uveal melanoma. Arch Ophthalmol. 1999;117(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  39. Archambeau JO, Mao XW, Yonemoto LT, et al. What is the role of radiation in the treatment of subfoveal membranes: review of radiobiologic, pathologic, and other considerations to initiate a multimodality discussion. Int J Radiat Oncol Biol Phys. 1998;40(5):1125–36.

    Article  CAS  PubMed  Google Scholar 

  40. Hart PM, Archer DB, Chakravarthy U. Asymmetry of disciform scarring in bilateral disease when one eye is treated with radiotherapy. Br J Ophthalmol. 1995;79(6):562–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chakravarthy U, MacKenzie G. External beam radiotherapy in exudative age-related macular degeneration: a pooled analysis of phase I data. Br J Radiol. 2000;73(867):305–13.

    Article  CAS  PubMed  Google Scholar 

  42. Lambooij AC, Kuijpers RW, Mooy CM, Kliffen M. Radiotherapy of exudative age-related macular degeneration; a clinical and pathologic study. Graefe’s Arch Clin Exp Ophthalmol. 2001;239(7):539–43.

    Article  CAS  Google Scholar 

  43. Kishan AU, Modjtahedi BS, Morse LS, Lee P. Radiation therapy for neovascular age-related macular degeneration. Int J Radiat Oncol Biol Phys. 2013;85(3):583–97.

    Article  PubMed  Google Scholar 

  44. Petrarca R, Jackson TL. Radiation therapy for neovascular age-related macular degeneration. Clin Ophthalmol. 2011;5:57–63.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Finger PT, Berson A, Ng T, Szechter A. Ophthalmic plaque radiotherapy for age-related macular degeneration associated with subretinal neovascularization. Am J Ophthalmol. 1999;127(2):170–7.

    Article  CAS  PubMed  Google Scholar 

  46. Ivanov VN, Zhou H, Ghandhi SA, et al. Radiation-induced bystander signaling pathways in human fibroblasts: a role for interleukin-33 in the signal transmission. Cell Signal. 2010;22(7):1076–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lommatzsch PK, Werschnik C, Schuster E. Long-term follow-up of Ru-106/Rh-106 brachytherapy for posterior uveal melanoma. Graefe’s Archive Clin Exp Ophthalmol. 2000;238(2):129–37.

    Article  CAS  Google Scholar 

  48. Moore RF. Choroidal sarcoma treated by the intraocular insertion of radon seeds. Br J Ophthalmol. 1930;14(4):145–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. van Ginderdeuren R, van Limbergen E, Spileers W. 18 years’ experience with high dose rate strontium-90 brachytherapy of small to medium sized posterior uveal melanoma. Br J Ophthalmol. 2005;89(10):1306–10.

    Article  PubMed Central  PubMed  Google Scholar 

  50. • Jaakkola A, Heikkonen J, Tommila P, Laatikainen L, Immonen I. Strontium plaque brachytherapy for exudative age-related macular degeneration: three-year results of a randomized study. Ophthalmology. 2005;112(4):567–73. Initial report evaluating the efficacy of episcleral 175 strontium 90 (Sr90) plaque brachytherapy in patients with CNV.

  51. Char DH, Irvine AI, Posner MD, Quivey J, Phillips TL, Kroll S. Randomized trial of radiation for age-related macular degeneration. Am J Ophthalmol. 1999;127(5):574–8.

    Article  CAS  PubMed  Google Scholar 

  52. Bergink GJ, Hoyng CB, van der Maazen RW, Vingerling JR, van Daal WA, Deutman AF. A randomized controlled clinical trial on the efficacy of radiation therapy in the control of subfoveal choroidal neovascularization in age-related macular degeneration: radiation versus observation. Graefe’s Arch Clin Exp Ophthalmol. 1998;236(5):321–5.

    Article  CAS  Google Scholar 

  53. Furtado JM, Lansingh VC, Carter MJ, et al. Causes of blindness and visual impairment in Latin America. Surv Ophthalmol. 2012;57(2):149–77.

    Article  PubMed  Google Scholar 

  54. Avila MP, Farah ME, Santos A, Duprat JP, Woodward BW, Nau J. Twelve-month short-term safety and visual-acuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to age-related macular degeneration. Br J Ophthalmol. 2009;93(3):305–9.

    Article  CAS  PubMed  Google Scholar 

  55. Avila MP, Farah ME, Santos A, et al. Three-year safety and visual acuity results of epimacular 90 strontium/90 yttrium brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Retina. 2012;32(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  56. Hokkanen J, Heikkonen J, Holmberg P. Theoretical calculations of dose distributions for beta-ray eye applicators. Med Phys. 1997;24(2):211–3.

    Article  CAS  PubMed  Google Scholar 

  57. Robison CD, Krebs I, Binder S, et al. Vitreomacular adhesion in active and end-stage age-related macular degeneration. Am J Ophthalmol. 2009;148(1):79–82.e2.

    Article  PubMed  Google Scholar 

  58. Stefansson E, Landers MB 3rd, Wolbarsht ML. Increased retinal oxygen supply following pan-retinal photocoagulation and vitrectomy and lensectomy. Trans Am Ophthalmol Soc. 1981;79:307–34.

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Canton VM, Quiroz-Mercado H, Velez-Montoya R, et al. 24-Gy low-voltage X-ray irradiation with ranibizumab therapy for neovascular AMD: 6-month safety and functional outcomes. Ophthalmic Surg Lasers Imaging. 2012;43(1):20–4.

    Article  PubMed  Google Scholar 

  60. Jaakkola A, Heikkonen J, Tommila P, Laatikainen L, Immonen I. Strontium plaque irradiation of subfoveal neovascular membranes in age-related macular degeneration. Graefe’s Arch Clin Exp Ophthalmol. 1998;236(1):24–30.

    Article  CAS  Google Scholar 

  61. Avila MP, Farah ME, Santos A, et al. Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina. 2009;29(2):157–69.

    Article  PubMed  Google Scholar 

  62. •• Dugel PU, Bebchuk JD, Nau J, et al. Epimacular brachytherapy for neovascular age-related macular degeneration: a randomized, controlled trial (CABERNET). Ophthalmology. 2013;120(2):317–27. Results of the CABERNET trial a randomized, active-controlled, phase III clinical trial demonstrating non inferiority of epimacular brachytherapy compared to ranibizumab monotherapy using a 20 % non-inferiority margin.

  63. Petrarca R, Dugel PU, Bennett M, et al. Macular epiretinal brachytherapy in treated age-related macular degeneration (MERITAGE): month 24 safety and efficacy results. Retina. 2014;34(5):874–9.

    Article  PubMed  Google Scholar 

  64. Dugel PU, Petrarca R, Bennett M, et al. Macular epiretinal brachytherapy in treated age-related macular degeneration: MERITAGE study: twelve-month safety and efficacy results. Ophthalmology. 2012;119(7):1425–31.

    Article  PubMed  Google Scholar 

  65. McGill CS, Schwartz JA, Moore JZ, McLaughlin PW, Shih AJ. Precision grid and hand motion for accurate needle insertion in brachytherapy. Med Phys. 2011;38(8):4749–59.

    Article  PubMed  Google Scholar 

  66. Schindler R. Episcleral brachytherapy in the management of age-related choroidal neovascularization. Retina 2012;2012; Hawaii.

  67. Rodel F, Keilholz L, Herrmann M, Sauer R, Hildebrandt G. Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int J Radiat Biol. 2007;83(6):357–66.

    Article  CAS  PubMed  Google Scholar 

  68. Hadjimichael C, Kardamakis D, Papaioannou S. Irradiation dose-response effects on angiogenesis and involvement of nitric oxide. Anticancer Res. 2005;25(2A):1059–65.

    CAS  PubMed  Google Scholar 

  69. • Moshfeghi DM, Kaiser PK, Gertner M. Stereotactic low-voltage X-ray irradiation for age-related macular degeneration. Br J Ophthalmol. 2011;95(2):185–8. Initial description of the Low-Voltage Stereotactic Radiotherapy system.

  70. Canton VM, Quiroz-Mercado H, Velez-Montoya R, et al. 16-Gy low-voltage X-ray irradiation with ranibizumab therapy for AMD: 6-month safety and functional outcomes. Ophthalmic Surg Lasers Imaging. 2011;42(6):468–73.

    Article  PubMed  Google Scholar 

  71. Moshfeghi AA, Morales-Canton V, Quiroz-Mercado H, et al. 16 Gy low-voltage X-ray irradiation followed by as needed ranibizumab therapy for age-related macular degeneration: 12 month outcomes of a ‘radiation-first’ strategy. Br J Ophthalmol. 2012;96(10):1320–4.

    Article  PubMed  Google Scholar 

  72. Hanlon J, Firpo M, Chell E, Moshfeghi DM, Bolch WE. Stereotactic radiosurgery for AMD: a Monte Carlo-based assessment of patient-specific tissue doses. Invest Ophthalmol Vis Sci. 2011;52(5):2334–42.

    Article  PubMed  Google Scholar 

  73. Taddei PJ, Chell E, Hansen S, Gertner M, Newhauser WD. Assessment of targeting accuracy of a low-energy stereotactic radiosurgery treatment for age-related macular degeneration. Phys Med Biol. 2010;55(23):7037–54.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Lee C, Chell E, Gertner M, et al. Dosimetry characterization of a multibeam radiotherapy treatment for age-related macular degeneration. Med Phys. 2008;35(11):5151–60.

    Article  PubMed  Google Scholar 

  75. Hanlon J, Lee C, Chell E, et al. Kilovoltage stereotactic radiosurgery for age-related macular degeneration: assessment of optic nerve dose and patient effective dose. Med Phys. 2009;36(8):3671–81.

    Article  PubMed  Google Scholar 

  76. Gertner M, Chell E, Pan KH, Hansen S, Kaiser PK, Moshfeghi DM. Stereotactic targeting and dose verification for age-related macular degeneration. Med Phys. 2010;37(2):600–6.

    Article  PubMed  Google Scholar 

  77. Singh RP, Shusterman EM, Moshfeghi D, Danis R, Gertner M. Pilot study of the delivery of microcollimated pars plana external beam radiation in porcine eyes: 270-day analysis. J Ophthalmol. 2012;2012:615214.

    PubMed Central  PubMed  Google Scholar 

  78. Barakat MR, Shusterman M, Moshfeghi D, Danis R, Gertner M, Singh RP. Pilot study of the delivery of microcollimated pars plana external beam radiation in porcine eyes. Arch Ophthalmol. 2011;129(5):628–32.

    Article  PubMed  Google Scholar 

  79. Moshfeghi AA, Canton VM, Quiroz-Mercado H, et al. 16-Gy low-voltage X-ray irradiation followed by as-needed ranibizumab therapy for AMD: 6-month outcomes of a “radiation-first” strategy. Ophthalmic Surg Lasers Imaging. 2011;42(6):460–7.

    Article  PubMed  Google Scholar 

  80. • Jackson TL, Chakravarthy U, Kaiser PK, et al. Stereotactic radiotherapy for neovascular age-related macular degeneration: 52-week safety and efficacy results of the INTREPID study. Ophthalmology. 2013;120(9):1893–900. INTREPID Trial: At 1 year, the study met primary and secondary end points and showed that Stereotactic Radiotherapy significantly reduced the need for anti-VEGF injections while maintaining vision, with a favorable safety profile.

  81. •• Jackson T. INTREPID data and its significance. London: EURETINA; 2014. Two-year results of INTREPID trial showed that the previously treated wet AMD patients continued to receive the benefits of a 25 % mean reduction in anti-VEGF injections over 2 years. Additionally, the targeted patient population maintained a 45 % mean reduction in injections through 2-years, with stable vision.

  82. Brown DM, Regillo CD. Anti-VEGF agents in the treatment of neovascular age-related macular degeneration: applying clinical trial results to the treatment of everyday patients. Am J Ophthalmol. 2007;144(4):627–37.

    Article  CAS  PubMed  Google Scholar 

  83. Kakinoki M, Sawada O, Sawada T, Saishin Y, Kawamura H, Ohji M. Effect of vitrectomy on aqueous VEGF concentration and pharmacokinetics of bevacizumab in macaque monkeys. Invest Ophthalmol Vis Sci. 2012;53(9):5877–80.

    Article  CAS  PubMed  Google Scholar 

  84. •• Petrarca R, Richardson M, Douiri A, et al. Safety testing of epimacular brachytherapy with microperimetry and indocyanine green angiography: 12-month results. Retina. 2013;33(6):1232–40. Study demonstrating the safety results of epimacular brachytherapy with microperimetry and ICG.

  85. •• Excellence NIfHaC. Treating wet age-related macular degeneration (AMD) using localised radiotherapy. Manchester: Excellence NIfHaC; 2011. 2011 Practice Guidelines and Position Statements from the United Kingdom’s National Institute for Health and Clinical Excellence stating that current evidence on the efficacy of epiretinal brachytherapy for neovascular AMD is inadequate and limited to small numbers of patients.

Download references

Disclosure

Dr. Grewal & Dr. Vajzovic both declare they have no conflicts of interest. Heed Ophthalmic Foundation, San Francisco, CA as support for Dr. Grewal and Knights Templar Eye Foundation, Flower Mound, TX for Dr. Vajzovic.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejla Vajzovic.

Additional information

This article is part of the Topical Collection on Therapies in Age-Related Macular Degeneration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, D.S., Vajzovic, L. Brachytherapy in Neovascular AMD. Curr Ophthalmol Rep 3, 40–50 (2015). https://doi.org/10.1007/s40135-014-0061-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-014-0061-5

Keywords

Navigation