Skip to main content

Advertisement

Log in

Functional Imaging of Immunotherapy: Response Criteria, Imaging Characteristics, and Novel Immunoimaging of Advanced Malignancies

  • NUCLEAR MEDICINE & PET/CT IMAGING (R FLAVELL, SECTION EDITOR)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Immunotherapy plays a vital role in the management of patients with a subset of advanced malignancies. The mechanism of action of these novel agents has led to the development of unique imaging characteristics that are important to recognize and categorize as these can have a profound impact on patient management. Additionally, the development of novel radioactive tracers as non-invasive imaging biomarkers offer a glimpse into the future use of functional imaging.

Recent Findings

Immunotherapy is known to cause toxicities referred to as immune-related adverse events (irAEs). By reviewing the different response criteria used for both anatomic and metabolic imaging, while understanding the imaging characteristics of more common irAEs, one can increase the diagnostic accuracy of complex oncologic cases.

Summary

This article will provide a review of the mechanism of action of immunotherapy, response criteria used for diagnostic evaluation, imaging features of common irAEs, and novel immunoimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance.

  1. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. https://doi.org/10.1056/NEJMoa1003466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar V, Chaudhary N, Garg M, Floudas CS, Soni P, Chandra AB. Current diagnosis and management of immune related adverse events (irAEs) induced by immune checkpoint inhibitor therapy. Front Pharmacol. 2017;8:49. https://doi.org/10.3389/fphar.2017.00049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. •• Decazes P, Bohn P. Immunotherapy by immune checkpoint inhibitors and nuclear medicine imaging: current and future applications. Cancers (Basel) 2020;12(2):371. https://doi.org/10.3390/cancers12020371. Review article discussing the effects and implications of immune checkpoint inhibitors on imaging with particular emphasis on nuclear medicine.

  4. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84. https://doi.org/10.1101/gad.314617.118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • Tang YZ, Szabados B, Leung C, Sahdev A. Adverse effects and radiological manifestations of new immunotherapy agents. Br J Radiol 2019;92(1093):20180164. https://doi.org/10.1259/bjr.20180164. Review article primarily focusing on the imaging characteristics of immune-related adverse events on anatomic imaging.

  6. Somarouthu B, Lee SI, Urban T, Sadow CA, Harris GJ, Kambadakone A. Immune-related tumour response assessment criteria: a comprehensive review. Br J Radiol. 2018;91:20170457. https://doi.org/10.1259/bjr.20170457.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013;14:1212–8. https://doi.org/10.1038/ni.2762.

    Article  CAS  PubMed  Google Scholar 

  8. Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3:611–8. https://doi.org/10.1038/ni0702-611.

    Article  CAS  PubMed  Google Scholar 

  9. •• Nishino M, Hatabu H, Hodi FS. Imaging of cancer immunotherapy: current approaches and future directions. Radiology. 2019;290:9–22. https://doi.org/10.1148/radiol.2018181349. Article focusing on response criteria, imaging characteristics, and therapy of irAEs for patients undergoing immunotherapy.

  10. • Aide N, Hicks RJ, Le Tourneau C, et al. FDG PET/CT for assessing tumour response to immunotherapy. Eur J Nucl Med Mol Imaging. 2019;46:238–50. https://doi.org/10.1007/s00259-018-4171-4.Review article discussing the different metabolic manifestations of immune-related adverse events and response criteria based on metabolic parameters.

  11. Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current methods to define metabolic tumor volume in positron emission tomography: which one is better? Nucl Med Mol Imaging. 2018;52(1):5–15. https://doi.org/10.1007/s13139-017-0493-6.

    Article  PubMed  Google Scholar 

  12. Ito K, Schöder H, Teng R, Humm JL, Ni A, Wolchok JD, Weber WA. Prognostic value of baseline metabolic tumor volume measured on 18F-fluorodeoxyglucose positron emission tomography/computed tomography in melanoma patients treated with ipilimumab therapy. Eur J Nucl Med Mol Imaging. 2019;46:930–9. https://doi.org/10.1007/s00259-018-4211-0.

    Article  CAS  PubMed  Google Scholar 

  13. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228–47. https://doi.org/10.1016/j.ejca.2008.10.026.

  14. Wang GX, Kurra V, Gainor JF, Sullivan RJ, Flaherty KT, Lee SI, Fintelmann FJ. Immune checkpoint inhibitor cancer therapy: spectrum of imaging findings. Radiographics. 2017;37:2132–44. https://doi.org/10.1148/rg.2017170085.

    Article  PubMed  Google Scholar 

  15. •• Flavell R, Evans M, Villanueva-Meyer J, Yom S. Understanding response to immunotherapy using standard of care and experimental imaging approaches. Int J Radiat Oncol Biol Phys. 2020:0360-0316. https://doi.org/10.1016/j.ijrobp.2020.06.025. Article discussing response criteria, imaging characteristics, and novel molecular imaging for patients undergoing immunotherapy with a specific focus on the effects of concurrent radiation therapy.

  16. •• Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, Lin NU, Litière S, Dancey J, Chen A, et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017;18:e143–52. 1https://doi.org/10.1016/S1470-2045(17)30074-8. Article delineating imaging guidelines for assessing tumor response in the setting of immunotherapy.

  17. Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, Goel S, Bedard P, Le-Tourneau C. Novel patterns of response under immunotherapy. Ann Oncol. 2019;30:385–96. https://doi.org/10.1093/annonc/mdz003.

    Article  CAS  PubMed  Google Scholar 

  18. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, Maio M, Binder M, Bohnsack O, Nichol G, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20. https://doi.org/10.1158/1078-0432.CCR-09-1624.

    Article  CAS  PubMed  Google Scholar 

  19. Haratani K, Hayashi H, Chiba Y, Kudo K, Yonesaka K, Kato R, et al. Association of immune-related adverse events with nivolumab efficacy in non-small-cell lung cancer. JAMA Oncol. 2018;4:374–8. https://doi.org/10.1001/jamaoncol.2017.2925.

    Article  PubMed  Google Scholar 

  20. Abbas W, Rao RR, Popli S. Hyperprogression after immunotherapy. South Asian J Cancer. 2019;8:244–6. https://doi.org/10.4103/sajc.sajc_389_18.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Adashek J, Subbiah I, Matos I, Garralda E, Menta A, Ganeshan D, Subbiah V. Hyperprogression and immunotherapy: fact, fiction, or alternative fact? Trends in Cancer. 2020;6:181–21919. https://doi.org/10.1016/j.trecan.2020.01.005.

    Article  CAS  PubMed  Google Scholar 

  22. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14. https://doi.org/10.1002/1097-0142(19810101)47:1<207:AID-CNCR2820470134>3.0.CO;2-6.

    Article  CAS  PubMed  Google Scholar 

  23. •• Kasten BB, Udayakumar N, Leavenworth JW, et al. Current and future imaging methods for evaluating response to immunotherapy in Neuro-Oncology. Theranostics. 2019;9(17):5085–5104. https://doi.org/10.7150/thno.34415. Article focusing on response criteria and current investigational molecular imaging techniques in neuro-oncology for patients undergoing immunotherapy.

  24. Kaira K, Shimizu K, Kitahara S, Yajima T, Atsumi J, Kosaka T, Ohtaki Y, Higuchi T, Oyama T, Asao T, et al. 2-Deoxy-2-[fluorine-18] fluoro-d-glucose uptake on positron emission tomography is associated with programmed death ligand-1 expression in patients with pulmonary adenocarcinoma. Eur J Cancer. 2018;101:181–90. https://doi.org/10.1016/j.ejca.2018.06.022.

    Article  CAS  PubMed  Google Scholar 

  25. Surov A, Meyer HJ, Wienke A. Standardized uptake values derived from 18F-FDG PET may predict lung cancer microvessel density and expression of KI 67, VEGF, and HIF-1α but not expression of cyclin D1, PCNA, EGFR, PD L1, and p53. Contrast Media Mol Imaging. 2018;2018:9257929. https://doi.org/10.1155/2018/9257929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen R, Zhou X, Liu J, Huang G. Relationship between the expression of PD-1/PD-L1 and 18F-FDG uptake in bladder cancer. Eur J Nucl Med Mol Imaging. 2019;46:848–54. https://doi.org/10.1007/s00259-018-4208-8.

    Article  CAS  PubMed  Google Scholar 

  27. Kong BY, Menzies AM, Saunders CA, Liniker E, Ramanujam S, Guminski A, et al. Residual FDG-PET metabolic activity in metastatic melanoma patients with prolonged response to anti-PD-1 therapy. Pigment Cell Melanoma Res. 2016;29:572–7. https://doi.org/10.1111/pcmr.12503.

    Article  CAS  PubMed  Google Scholar 

  28. Cho SY, Lipson EJ, Im HJ, Rowe SP, Gonzalez EM, Blackford A, et al. Prediction of response to immune checkpoint inhibitor therapy using early-time-point (18)F-FDG PET/CT imaging in patients with advanced melanoma. J Nucl Med. 2017;58:1421–8. https://doi.org/10.2967/jnumed.116.188839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anwar H, Sachpekidis C, Winkler J, Kopp-Schneider A, Haberkorn U, Hassel JC, et al. Absolute number of new lesions on (18)F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur J Nucl Med Mol Imaging. 2018;45:376–83. https://doi.org/10.1007/s00259-017-3870-6.

    Article  CAS  PubMed  Google Scholar 

  30. Sachpekidis C, Anwar H, Winkler J, Kopp-Schneider A, Larribere L, Haberkorn U, et al. The role of interim (18)F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma. Eur J Nucl Med Mol Imaging. 2018;45:1289–96. https://doi.org/10.1007/s00259-018-3972-9.

    Article  CAS  PubMed  Google Scholar 

  31. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J Clin Oncol. 2016;34:15107. https://doi.org/10.1200/JCO.2015.64.0391.

    Article  CAS  Google Scholar 

  32. • Mekki A, Dercle L, Lichtenstein P, et al. Detection of immune-related adverse events by medical imaging in patients treated with anti-programmed cell death 1. Eur J Cancer. 2018;96:91–104. https://doi.org/10.1016/j.ejca.2018.03.006. Article describes the most common immune-related adverse events identified by medical imaging.

  33. Khoja L, Day D, Wei-Wu Chen T, Siu LL, Hansen AR. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann Oncol. 2017;28:2377–85. https://doi.org/10.1093/annonc/mdx286.

    Article  CAS  PubMed  Google Scholar 

  34. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2:1346–53. https://doi.org/10.1001/jamaoncol.2016.1051.

    Article  PubMed  Google Scholar 

  35. • Nobashi T, Baratto L, Reddy SA, et al. Predicting response to immunotherapy by evaluating tumors, lymphoid cell-rich organs, and immune-related adverse events using FDG-PET/CT. Clin Nucl Med. 2019:44(4):e272–9. https://doi.org/10.1097/RLU.0000000000002453. Article focusing on early metabolic response to immune checkpoint inhibitors and immune-related adverse events on PET/CT imaging as predictive of favorable patient outcomes.

  36. Sachpekidis C, Larribère L, Kopp-Schneider A, Hassel JC, Dimitrakopoulou-Strauss A. Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma? Cancer Immunol Immunother. 2019;68:297–303. https://doi.org/10.1007/s00262-018-2279-9.

    Article  CAS  PubMed  Google Scholar 

  37. Sachpekidis C, Kopp-Schneider A, Hakim-Meibodi L, Dimitrakopoulou-Strauss A, Hassel JC. 18F-FDG PET/CT longitudinal studies in patients with advanced metastatic melanoma for response evaluation of combination treatment with vemurafenib and ipilimumab. Melanoma Res. 2019;29:178–86. https://doi.org/10.1097/CMR.0000000000000541.

    Article  CAS  PubMed  Google Scholar 

  38. Tirumani SH, Ramaiya NH, Keraliya A, et al. Radiographic profiling of immune-related adverse events in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2015;3(10):1185–92. https://doi.org/10.1158/2326-6066.CIR-15-0102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ibrahim RA, Berman DM, DePril V, Humphrey RW, Chen T, Messina M, et al. Ipilimumab safety profile: summary of findings from completed trials in advanced melanoma. J Clin Oncol. 2011;29:8583. https://doi.org/10.1200/jco.2011.29.15_suppl.8583.

    Article  Google Scholar 

  40. Abdel-Rahman O, ElHalawani H, Fouad M. Risk of gastrointestinal complications in cancer patients treated with immune checkpoint inhibitors: a meta-analysis. Immunotherapy. 2015;7:1213–27. https://doi.org/10.2217/imt.15.87.

    Article  CAS  PubMed  Google Scholar 

  41. Rastogi P, Sultan M, Charabaty AJ, Atkins MB, Mattar MC. Ipilimumab associated colitis: an ipicolitis case series at medstar georgetown university hospital. World J Gastroenterol. 2015;21:4373–8. https://doi.org/10.3748/wjg.v21.i14.4373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim KW, Ramaiya NH, Krajewski KM, Shinagare AB, Howard SA, Jagannathan JP, et al. Ipilimumab-associated colitis: CT findings. AJR Am J Roentgenol. 2013;200:W468–W474474.

    Article  Google Scholar 

  43. Lyall A, Vargas HA, Carvajal RD, Ulaner G. Ipilimumab-induced colitis on FDG PET/CT. Clin Nucl Med. 2012;37:629–30. https://doi.org/10.1097/RLU.0b013e318248549a.

    Article  PubMed  Google Scholar 

  44. Garcia-Neuer M, Marmarelis ME, Jangi SR, Luke JJ, Ibrahim N, Davis M, et al. Diagnostic comparison of CT scans and colonoscopy for immune-related colitis in ipilimumab-treated advanced melanoma patients. Cancer Immunol Res. 2017;5:286–91. https://doi.org/10.1158/2326-6066.CIR-16-0302.

    Article  CAS  PubMed  Google Scholar 

  45. Cheng R, Cooper A, Kench J, Watson G, Bye W, McNeil C, et al. Ipilimumab-induced toxicities and the gastroenterologist. J Gastroenterol Hepatol. 2015;30:657–66. https://doi.org/10.1111/jgh.12888.

    Article  CAS  PubMed  Google Scholar 

  46. Naidoo J, Wang X, Woo KM, et al. Pneumonitis in patients treated with anti-programmed death-1/programmed death ligand 1 therapy. J Clin Oncol. 2017;35(7):709–17. https://doi.org/10.1200/JCO.2016.68.2005.

    Article  CAS  PubMed  Google Scholar 

  47. • Haanen J, Carbonnel F, Robert C, Kerr KM, Peters S, Larkin J, et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28: iv119–142. https://doi.org/10.1093/annonc/mdx225. Article focusing on immune-related adverse events based on immunotherapy class with guidelines on diagnosis and treatment.

  48. Nishino M, Sholl LM, Hodi FS, Hatabu H, Ramaiya NH. Anti-PD-1-related pneumonitis during cancer immunotherapy. N Engl J Med. 2015;373:288–90. https://doi.org/10.1056/NEJMc1505197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Raad RA, Pavlick A, Kannan R, Friedman KP. Ipilimumab-induced hepatitis on 18F-FDG PET/CT in a patient with malignant melanoma. Clin Nucl Med. 2015;40:258–9. https://doi.org/10.1097/RLU0000000000000606.

    Article  PubMed  Google Scholar 

  50. Okano Y, Satoh T, Horiguchi K, Toyoda M, Osaki A, Matsumoto S, et al. Nivolumab-induced hypophysitis in a patient with advanced malignant melanoma. Endocr J. 2016;63:905–12. https://doi.org/10.1507/endocrj.EJ16-0161.

    Article  PubMed  Google Scholar 

  51. Min L, Vaidya A, Becker C. Thyroid autoimmunity and ophthalmopathy related to melanoma biological therapy. Eur J Endocrinol. 2011;164:303–7. https://doi.org/10.1530/EJE-10-0833.

    Article  CAS  PubMed  Google Scholar 

  52. Carpenter KJ, Murtagh RD, Lilienfeld H, Weber J, Murtagh FR. Ipilimumab-induced hypophysitis: MR imaging findings. AJNR Am J Neuroradiol. 2009;30:1751–3. https://doi.org/10.3174/ajnr.A1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanaka R, Fujisawa Y, Maruyama H, Nakamura Y, Yoshino K, Ohtsuka M, et al. Nivolumab-induced thyroid dysfunction. Jpn J Clin Oncol. 2016;46:575–9. https://doi.org/10.1093/jjco/hyw036.

    Article  PubMed  Google Scholar 

  54. Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary. 2016;19:82–92. https://doi.org/10.1007/s11102-015-0671-4.

    Article  CAS  PubMed  Google Scholar 

  55. •• Lambin P, Leijenaar R, Deist T, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–62. https://doi.org/10.1038/nrclinonc.2017.141. Article summarizing the multiple advantages and limitations of radiomics with guidelines as they pertain to medical imaging.

  56. Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cǎlin AM, Pizzi AD, Lalezari F, Lambregts DMJ, Rohaan M, Parmar C, et al. Predicting response to cancer immunotherapy using non-invasive radiomic biomarkers. Ann Oncol. 2019;30:998–1004. https://doi.org/10.1093/annonc/mdz108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen RY, Lin YC, Shen WC, Hsieh TC, Yen KY, Chen SW, Kao CH. Associations of tumor PD-1 ligands, immunohistochemical studies, and textural features in 18F-FDG PET in squamous cell carcinoma of the head and neck. Sci Rep. 2018;8:105. https://doi.org/10.1038/s41598-017-18489-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hatt M, Vallieres M, Visvikis D, Zwanenburg A. ISBI: an international community radiomics standardization initiative. J Nucl Med. 2018;59:287.

    Google Scholar 

  59. Van der Veen EL, Bensch F, Glaudemans AWJM, Lub-de Hooge MN, de Vries EGE. Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat Rev. 2018;70:232–44. https://doi.org/10.1016/j.ctrv.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  60. •• van dvan de Donk PP, Kist de Ruijter L, Lub-de Hooge MN, Brouwers AH, van der Wekken AJ, Oosting SF, Fehrmann RSN, de Groot DJA, de Vries EGE. Molecular imaging biomarkers for immune checkpoint inhibitor therapy. Theranostics.. 2020;10(4): 1708–1718. https://doi.org/10.7150/thno.38339. Article focusing on the different novel radiotracers being investigated for potential use as noninvasive molecular imaging biomarkers in the setting of immunotherapy.

  61. Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24:1852–8. https://doi.org/10.1038/s41591-018-0255-8.

    Article  CAS  PubMed  Google Scholar 

  62. Stutvoet TS, van der Veen EL, Kol A, et al. Molecular imaging of PD-L1 expression and dynamics with the adnectin-based PET tracer 18F-BMS-986192. J Nucl Med. 2020. https://doi.org/10.2967/jnumed.119.241364.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roxanna D. Juarez.

Ethics declarations

Conflict of interest

Spencer Behr – AAA Advisory Board. Roxanna Juarez declares no potential conflicts of interest. Andrew Taliaferro declares no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Nuclear Medicine & PET/CT Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juarez, R.D., Taliaferro, A. & Behr, S.C. Functional Imaging of Immunotherapy: Response Criteria, Imaging Characteristics, and Novel Immunoimaging of Advanced Malignancies. Curr Radiol Rep 8, 24 (2020). https://doi.org/10.1007/s40134-020-00369-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40134-020-00369-9

Keywords

Navigation