Skip to main content

Advertisement

Log in

Radioimmunotherapy in Oncology

  • Nuclear Medicine (B Franc, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Radioimmunotherapy (RIT) is the targeting of radiosensitive tumors through the use of monoclonal antibodies. The purpose of this review is to discuss the benefit and challenges of RIT. We appraise factors that determine optimal targeting of tumor such as choice of target, targeting antibody, and the associated radionuclide, as well as the current methods to potentiate RIT effect.

Recent Findings

Radioimmunotherapy has a well-established role in the treatment of hematological malignancies. Recent completed and current studies in the treatment of solid malignancies are however demonstrating good clinical response with acceptable toxicity profiles.

Summary

Since its inception, improved molecular engineering and targeting of new molecules, the discovery of new potential tumor targets, and the incorporation of methods to potentiate effect and reduce toxicity, will probably see radioimmunotherapy becoming a more commonplace treatment in the management of both hematological and solid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Alkan SS. Monoclonal antibodies: the story of a discovery that revolutionized science and medicine. Nat Rev Immunol. 2004;4(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  2. Chamarthy MR, Williams SC, Moadel RM. Radioimmunotherapy of non-Hodgkin’s lymphoma: from the ‘magic bullets’ to ‘radioactive magic bullets’. Yale J Biol Med. 2011;84(4):391–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med. 2015;2:12 (Lausanne).

    Article  Google Scholar 

  4. Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29(2):57–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tellez-Gabriel M, Ory B, Lamoureux F, Heymann M-F, Heymann D. Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci. 2016;17(12):2142.

    Article  PubMed Central  Google Scholar 

  6. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tempero M, Leichner P, Baranowska-Kortylewicz J, Harrison K, Augustine S, Schlom J, et al. High-dose therapy with 90Yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res. 2000;6(8):3095–102.

    CAS  PubMed  Google Scholar 

  8. Miller RC, Iott MJ, Corsini MM. Review of adjuvant radiochemotherapy for resected pancreatic cancer and results from Mayo Clinic for the 5th JUCTS symposium. Int J Radiat Oncol Biol Phys. 2009;75(2):364–8.

    Article  PubMed  Google Scholar 

  9. Meredith RF, Buchsbaum DJ, Alvarez RD, LoBuglio AF. Brief overview of preclinical and clinical studies in the development of intraperitoneal radioimmunotherapy for ovarian cancer. Clin Cancer Res. 2007;13(18 Pt 2):5643s–5s.

    Article  CAS  PubMed  Google Scholar 

  10. De Bonis P, Lofrese G, Anile C, Pompucci A, Vigo V, Mangiola A. Radioimmunotherapy for high-grade glioma. Immunotherapy. 2013;5(6):647–59.

    Article  PubMed  Google Scholar 

  11. Dobrenkov K, Cheung NK. GD2-targeted immunotherapy and radioimmunotherapy. Semin Oncol. 2014;41(5):589–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15(6):347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Meerten T, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol. 2010;47(2):199–210.

    Article  PubMed  Google Scholar 

  14. Clark M. Antibody humanization: a case of the ‘Emperor’s new clothes’? Immunol Today. 2000;21(8):397–402.

    Article  CAS  PubMed  Google Scholar 

  15. Deyev SM, Lebedenko EN. Modern technologies for creating synthetic antibodies for clinical application. Acta Nat. 2009;1(1):32–50.

    CAS  Google Scholar 

  16. Andersson H, Cederkrantz E, Back T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2–a phase I study. J Nucl Med. 2009;50(7):1153–60.

    Article  CAS  PubMed  Google Scholar 

  17. Humm JL, Chin LM, Macklis RM. F(ab’)2 fragments versus intact antibody—an isodose comparison. J Nucl Med. 1990;31(6):1045–7.

    CAS  PubMed  Google Scholar 

  18. Knowles SM, Zettlitz KA, Tavare R, Rochefort MM, Salazar FB, Stout DB, et al. Quantitative immunoPET of prostate cancer xenografts with 89Zr- and 124I-labeled anti-PSCA A11 minibody. J Nucl Med. 2014;55(3):452–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kenanova V, Wu AM. Tailoring antibodies for radionuclide delivery. Expert Opin Drug Deliv. 2006;3(1):53–70.

    Article  CAS  PubMed  Google Scholar 

  20. Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH. Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med. 2003;44(3):400–11.

    PubMed  Google Scholar 

  21. Altai M, Membreno R, Cook B, Tolmachev V, Zeglis B. Pretargeted imaging and therapy. J Nucl Med. 2017. doi:10.2967/jnumed.117.189944.

    Google Scholar 

  22. Sung C, van Osdol WW. Pharmacokinetic comparison of direct antibody targeting with pretargeting protocols based on streptavidin-biotin binding. J Nucl Med. 1995;36(5):867–76.

    CAS  PubMed  Google Scholar 

  23. Paganelli G, Belloni C, Magnani P, Zito F, Pasini A, Sassi I, et al. Two-step tumour targetting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med. 1992;19(5):322–9.

    Article  CAS  PubMed  Google Scholar 

  24. Kalofonos HP, Rusckowski M, Siebecker DA, Sivolapenko GB, Snook D, Lavender JP, et al. Imaging of tumor in patients with indium-111-labeled biotin and streptavidin-conjugated antibodies: preliminary communication. J Nucl Med. 1990;31(11):1791–6.

    CAS  PubMed  Google Scholar 

  25. Li G-P, Zhang H, Zhu C-M, Zhang J, Jiang X-F. Avidin-biotin system pretargeting radioimmunoimaging and radioimmunotherapy and its application in mouse model of human colon carcinoma. World J Gastroenterol. 2005;11(40):6288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, et al. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med. 1999;26(4):348–57.

    Article  CAS  PubMed  Google Scholar 

  27. Forero A, Weiden PL, Vose JM, Knox SJ, LoBuglio AF, Hankins J, et al. Phase 1 trial of a novel anti-CD20 fusion protein in pretargeted radioimmunotherapy for B-cell non-Hodgkin lymphoma. Blood. 2004;104(1):227–36.

    Article  CAS  PubMed  Google Scholar 

  28. Sharkey RM, Chang CH, Rossi EA, McBride WJ, Goldenberg DM. Pretargeting: taking an alternate route for localizing radionuclides. Tumour Biol. 2012;33(3):591–600.

    Article  CAS  PubMed  Google Scholar 

  29. Rossi EA, Chang CH, Losman MJ, Sharkey RM, Karacay H, McBride W, et al. Pretargeting of carcinoembryonic antigen-expressing cancers with a trivalent bispecific fusion protein produced in myeloma cells. Clin Cancer Res. 2005;11(19 Pt 2):7122s–9s.

    Article  CAS  PubMed  Google Scholar 

  30. Goldenberg DM, Chang CH, Rossi EA, McBride JW, Sharkey RM. Pretargeted molecular imaging and radioimmunotherapy. Theranostics. 2012;2(5):523–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med. 2010;40(3):190–203.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu G, Dou S, Liu Y, Wang Y, Rusckowski M, Hnatowich DJ. 90Y labeled phosphorodiamidate morpholino oligomer for pretargeting radiotherapy. Bioconjug Chem. 2011;22(12):2539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leonidova A, Foerster C, Zarschler K, Schubert M, Pietzsch H-J, Steinbach J, et al. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci. 2015;6(10):5601–16.

    Article  CAS  Google Scholar 

  34. Rossin R, Lappchen T, van den Bosch SM, Laforest R, Robillard MS. Diels-Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J Nucl Med. 2013;54(11):1989–95.

    Article  CAS  PubMed  Google Scholar 

  35. Houghton JL, Membreno R, Abdel-Atti D, Cunanan KM, Carlin S, Scholz WW, et al. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand Diels-Alder click chemistry. Mol Cancer Ther. 2017;16(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  36. Ng B, Kramer E, Liebes L, Wasserheit C, Hochster H, Blank E, et al. Radiosensitization of tumor-targeted radioimmunotherapy with prolonged topotecan infusion in human breast cancer xenografts. Cancer Res. 2001;61(7):2996–3001.

    CAS  PubMed  Google Scholar 

  37. Elstrom RL, Ruan J, Christos PJ, Martin P, Lebovic D, Osborne J, et al. Phase 1 study of radiosensitization using bortezomib in patients with relapsed non-Hodgkin lymphoma receiving radioimmunotherapy with 131I-tositumomab. Leuk Lymphoma. 2015;56(2):342–6.

    Article  CAS  PubMed  Google Scholar 

  38. Cardillo TM, Blumenthal R, Ying Z, Gold DV. Combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer. Int J Cancer. 2002;97(3):386–92.

    Article  CAS  PubMed  Google Scholar 

  39. Supiot S, Gouard S, Charrier J, Apostolidis C, Chatal JF, Barbet J, et al. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines. Clin Cancer Res. 2005;11(19 Pt 2):7047s–52s.

    Article  CAS  PubMed  Google Scholar 

  40. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bourgeois M, Bailly C, Frindel M, Guerard F, Cherel M, Faivre-Chauvet A, et al. Radioimmunoconjugates for treating cancer: recent advances and current opportunities. Expert Opin Biol Ther. 2017;17(7):813–9.

    Article  CAS  PubMed  Google Scholar 

  42. Huang CY, Guatelli S, Oborn B, Allen B. SU-E-J-03: a comprehensive comparison between alpha and beta emitters for cancer radioimmunotherapy. Med Phys. 2014;41(6):154–5.

    Article  Google Scholar 

  43. Seidl C. Radioimmunotherapy with alpha-particle-emitting radionuclides. Immunotherapy. 2014;6(4):431–58.

    Article  CAS  PubMed  Google Scholar 

  44. Mausner LF, Straub RF, Srivastava SC. Production and use of prospective radionuclides for radioimmunotherapy. In: Srivastava SC, editor. Radiolabeled monoclonal antibodies for imaging and therapy. Boston: Springer; 1988. p. 149–63.

    Chapter  Google Scholar 

  45. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Emmanouilides C. Radioimmunotherapy for non-hodgkin lymphoma: historical perspective and current status. J Clin Exp Hematopathol. 2007;47(2):43–60.

    Article  Google Scholar 

  47. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.

    Article  CAS  PubMed  Google Scholar 

  48. Friedberg JW, Fisher RI. Iodine-131 tositumomab (Bexxar): radioimmunoconjugate therapy for indolent and transformed B-cell non-Hodgkin’s lymphoma. Expert Rev Anticancer Ther. 2004;4(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  49. Gordon LI, Witzig T, Molina A, Czuczman M, Emmanouilides C, Joyce R, et al. Yttrium 90-labeled ibritumomab tiuxetan radioimmunotherapy produces high response rates and durable remissions in patients with previously treated B-cell lymphoma. Clin Lymphoma. 2004;5(2):98–101.

    Article  CAS  PubMed  Google Scholar 

  50. Scholz CW, Pinto A, Linkesch W, Linden O, Viardot A, Keller U, et al. (90)Yttrium-ibritumomab-tiuxetan as first-line treatment for follicular lymphoma: 30 months of follow-up data from an international multicenter phase II clinical trial. J Clin Oncol. 2013;31(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  51. Rajguru S, Kristinsdottir T, Eickhoff J, Peterson C, Meyer CM, Traynor AM, et al. Yttrium 90-ibritumomab tiuxetan plus rituximab maintenance as initial therapy for patients with high-tumor-burden follicular lymphoma: a Wisconsin Oncology Network study. Clin Adv Hematol Oncol. 2014;12(8):509–15.

    PubMed  Google Scholar 

  52. Illidge TM, Mayes S, Pettengell R, Bates AT, Bayne M, Radford JA, et al. Fractionated (9)(0)Y-ibritumomab tiuxetan radioimmunotherapy as an initial therapy of follicular lymphoma: an international phase II study in patients requiring treatment according to GELF/BNLI criteria. J Clin Oncol. 2014;32(3):212–8.

    Article  CAS  PubMed  Google Scholar 

  53. • Smith MR, Hong F, Li H, Gordon LI, Gascoyne RD, Paietta EM, et al. Mantle cell lymphoma initial therapy with abbreviated R-CHOP followed by 90Y-ibritumomab tiuxetan: 10-year follow-up of the phase 2 ECOG-ACRIN study E1499. Leukemia. 2017;31(2):517–9. This study demonstrates that radioimmotherapy consolidation with 90Y-ibritumomab tiuxetan after R-CHOP is well tolerated and improves time-to-treatment failure.

  54. • Lossos IS, Fabregas JC, Koru-Sengul T, Miao F, Goodman D, Serafini AN, et al. Phase II study of (90)Y Ibritumomab tiuxetan (Zevalin) in patients with previously untreated marginal zone lymphoma. Leuk Lymphoma. 2015;56(6):1750–5. This study demonstrates favorable long-term responses and good tolerance in patients with marginal zone lymphoma treated with 90Y-ibritumomab tiuxetan as first line therapy

  55. Shimoni A, Avivi I, Rowe JM, Yeshurun M, Levi I, Or R, et al. A randomized study comparing yttrium-90 ibritumomab tiuxetan (Zevalin) and high-dose BEAM chemotherapy versus BEAM alone as the conditioning regimen before autologous stem cell transplantation in patients with aggressive lymphoma. Cancer. 2012;118(19):4706–14.

    Article  CAS  PubMed  Google Scholar 

  56. Krishnan A, Palmer JM, Tsai NC, Simpson JR, Nademanee A, Raubitschek A, et al. Matched-cohort analysis of autologous hematopoietic cell transplantation with radioimmunotherapy versus total body irradiation-based conditioning for poor-risk diffuse large cell lymphoma. Biol Blood Marrow Transplant. 2012;18(3):441–50.

    Article  PubMed  Google Scholar 

  57. Hohloch K, Lankeit HK, Zinzani PL, Scholz CW, Lorsbach M, Windemuth-Kieselbach C, et al. Radioimmunotherapy for first-line and relapse treatment of aggressive B-cell non-Hodgkin lymphoma: an analysis of 215 patients registered in the international RIT-Network. Eur J Nucl Med Mol Imaging. 2014;41(8):1585–92.

    Article  CAS  PubMed  Google Scholar 

  58. Reiss J, Link B, Ruan J, Furman R, Coleman M, Leonard J, et al. Long-term follow up of rates of secondary malignancy and late relapse of two trials using radioimmunotherapy consolidation following induction chemotherapy for previously untreated indolent lymphoma. Leuk Lymphoma. 2015;56(10):2870–5.

    Article  CAS  PubMed  Google Scholar 

  59. Gordon LI, Molina A, Witzig T, Emmanouilides C, Raubtischek A, Darif M, et al. Durable responses after ibritumomab tiuxetan radioimmunotherapy for CD20+ B-cell lymphoma: long-term follow-up of a phase 1/2 study. Blood. 2004;103(12):4429–31.

    Article  CAS  PubMed  Google Scholar 

  60. Morschhauser F, Kraeber-Bodere F, Wegener WA, Harousseau JL, Petillon MO, Huglo D, et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol. 2010;28(23):3709–16.

    Article  CAS  PubMed  Google Scholar 

  61. Kraeber-Bodere F, Pallardy A, Maisonneuve H, Campion L, Moreau A, Soubeyran I, et al. Consolidation anti-CD22 fractionated radioimmunotherapy with 90Y-epratuzumab tetraxetan following R-CHOP in elderly patients with diffuse large B-cell lymphoma: a prospective, single group, phase 2 trial. Lancet Haematol. 2017;4(1):e35–45.

    Article  PubMed  Google Scholar 

  62. Grosso DA, Hess RC, Weiss MA. Immunotherapy in acute myeloid leukemia. Cancer. 2015;121(16):2689–704.

    Article  CAS  PubMed  Google Scholar 

  63. Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep. 2015;10(2):65–75.

    Article  PubMed  Google Scholar 

  64. Jurcic JG, Larson SM, Sgouros G, McDevitt MR, Finn RD, Divgi CR, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–9.

    CAS  PubMed  Google Scholar 

  65. Rosenblat TL, McDevitt MR, Mulford DA, Pandit-Taskar N, Divgi CR, Panageas KS, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Orozco JJ, Back T, Kenoyer A, Balkin ER, Hamlin DK, Wilbur DS, et al. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121(18):3759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pagel JM, Gooley TA, Rajendran J, Fisher DR, Wilson WA, Sandmaier BM, et al. Allogeneic hematopoietic cell transplantation after conditioning with 131I-anti-CD45 antibody plus fludarabine and low-dose total body irradiation for elderly patients with advanced acute myeloid leukemia or high-risk myelodysplastic syndrome. Blood. 2009;114(27):5444–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Evans-Axelsson S, Timmermand OV, Bjartell A, Strand SE, Elgqvist J. Radioimmunotherapy for prostate cancer-current status and future possibilities. Semin Nucl Med. 2016;46(2):165–79.

    Article  PubMed  Google Scholar 

  69. Meredith RF, Khazaeli MB, Macey DJ, Grizzle WE, Mayo M, Schlom J, et al. Phase II study of interferon-enhanced < sup > 131 </sup > I-labeled high affinity CC49 monoclonal antibody therapy in patients with metastatic prostate cancer. Clin Cancer Res. 1999;5(10):3254s.

    CAS  PubMed  Google Scholar 

  70. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ. Phase I trial of 177Lu-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol. 2005;23(21):4591–601.

    Article  CAS  PubMed  Google Scholar 

  71. Huang CY, Oborn BM, Guatelli S, Allen BJ. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy. Med Phys. 2012;39(3):1282–8.

    Article  CAS  PubMed  Google Scholar 

  72. Vallabhajosula S, Goldsmith SJ, Kostakoglu L, Milowsky MI, Nanus DM, Bander NH. Radioimmunotherapy of prostate cancer using 90Y- and 177Lu-labeled J591 monoclonal antibodies: effect of multiple treatments on myelotoxicity. Clin Cancer Res. 2005;11(19 Pt 2):7195s–200s.

    Article  CAS  PubMed  Google Scholar 

  73. Vallabhajosula S, Nikolopoulou A, Jhanwar YS, Kaur G, Tagawa ST, Nanus DM, et al. Radioimmunotherapy of metastatic prostate cancer with (1)(7)(7)Lu-DOTAhuJ591 anti prostate specific membrane antigen specific monoclonal antibody. Curr Radiopharm. 2016;9(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  74. Richman CM, Denardo SJ, O’Donnell RT, Yuan A, Shen S, Goldstein DS, et al. High-dose radioimmunotherapy combined with fixed, low-dose paclitaxel in metastatic prostate and breast cancer by using a MUC-1 monoclonal antibody, m170, linked to indium-111/yttrium-90 via a cathepsin cleavable linker with cyclosporine to prevent human anti-mouse antibody. Clin Cancer Res. 2005;11(16):5920–7.

    Article  CAS  PubMed  Google Scholar 

  75. Choy H, Rodriguez FF, Koester S, Hilsenbeck S, Von Hoff DD. Investigation of taxol as a potential radiation sensitizer. Cancer. 1993;71(11):3774–8.

    Article  CAS  PubMed  Google Scholar 

  76. van Rij CM, Lutje S, Frielink C, Sharkey RM, Goldenberg DM, Franssen GM, et al. Pretargeted immuno-PET and radioimmunotherapy of prostate cancer with an anti-TROP-2 x anti-HSG bispecific antibody. Eur J Nucl Med Mol Imaging. 2013;40(9):1377–83.

    Article  PubMed  Google Scholar 

  77. van Rij CM, Frielink C, Goldenberg DM, Sharkey RM, Lutje S, McBride WJ, et al. Pretargeted radioimmunotherapy of prostate cancer with an anti-TROP-2xAnti-HSG bispecific antibody and a (177)Lu-labeled peptide. Cancer Biother Radiopharm. 2014;29(8):323–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pasternack JB, Domogauer JD, Khullar A, Akudugu JM, Howell RW. The advantage of antibody cocktails for targeted alpha therapy depends on specific activity. J Nucl Med. 2014;55(12):2012–9.

    Article  CAS  PubMed  Google Scholar 

  79. Calopedos RJS, Chalasani V, Asher R, Emmett L, Woo HH. Lutetium-177-labelled anti-prostate-specific membrane antigen antibody and ligands for the treatment of metastatic castrate-resistant prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis. 2017;20(3):352–60.

    Article  CAS  PubMed  Google Scholar 

  80. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K, et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003;9(17):6357–62.

    CAS  PubMed  Google Scholar 

  82. • Pandit-Taskar N, O’Donoghue JA, Ruan S, Lyashchenko SK, Carrasquillo JA, Heller G, et al. First-in-human imaging with (89)Zr-Df-IAB2M anti-PSMA minibody in patients with metastatic prostate cancer: pharmacokinetics, biodistribution, dosimetry, and lesion uptake. J Nucl Med. 2016;57(12):1858–64. This theranostic study demonstrates the safety, favorable biodistribution and kinetics, uptake of 89Zr-Df-IAB2M, an anti-PSMA minibody, in prostate cancer metastases, resulting in earlier lesion detection.

  83. Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Mathieu C, Guerard F, Frampas E, et al. Tumor immunotargeting using innovative radionuclides. Int J Mol Sci. 2015;16(2):3932–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid (6)(8)Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74.

    Article  PubMed  Google Scholar 

  85. Dewes S, Schiller K, Sauter K, Eiber M, Maurer T, Schwaiger M, et al. Integration of (68)Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: a retrospective study. Radiat Oncol. 2016;11:73.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gu Z, Thomas G, Yamashiro J, Shintaku IP, Dorey F, Raitano A, et al. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene. 2000;19(10):1288–96.

    Article  CAS  PubMed  Google Scholar 

  87. Tan Z, Chen P, Schneider N, Glover S, Cui L, Torgue J, et al. Significant systemic therapeutic effects of high-LET immunoradiation by 212Pb-trastuzumab against prostatic tumors of androgen-independent human prostate cancer in mice. Int J Oncol. 2012;40(6):1881–8.

    CAS  PubMed  Google Scholar 

  88. Bhusari P, Vatsa R, Singh G, Parmar M, Bal A, Dhawan DK, et al. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int J Cancer. 2017;140(4):938–47.

    Article  CAS  PubMed  Google Scholar 

  89. Rasaneh S, Rajabi H, Babaei MH, Daha FJ. 177Lu labeling of Herceptin and preclinical validation as a new radiopharmaceutical for radioimmunotherapy of breast cancer. Nucl Med Biol. 2010;37(8):949–55.

    Article  CAS  PubMed  Google Scholar 

  90. Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63(16):5084–90.

    CAS  PubMed  Google Scholar 

  91. Milenic DE, Garmestani K, Brady ED, Baidoo KE, Albert PS, Wong KJ, et al. Multimodality therapy: potentiation of high linear energy transfer radiation with paclitaxel for the treatment of disseminated peritoneal disease. Clin Cancer Res. 2008;14(16):5108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schoder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-trastuzumab in patients with esophagogastric cancer. J Nucl Med. 2017. doi:10.2967/jnumed.117.194555.

    Google Scholar 

  93. Behr TM, Goldenberg DM, Becker WS. Radioimmunotherapy of solid tumors: a review “of mice and men”. Hybridoma. 1997;16(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  94. Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol. 2005;23(27):6763–70.

    Article  CAS  PubMed  Google Scholar 

  95. Chatal JF, Campion L, Kraeber-Bodere F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24(11):1705–11.

    Article  CAS  PubMed  Google Scholar 

  96. Juweid M, Swayne LC, Sharkey RM, Dunn R, Rubin AD, Herskovic T, et al. Prospects of radioimmunotherapy in epithelial ovarian cancer: results with iodine-131-labeled murine and humanized MN-14 anti-carcinoembryonic antigen monoclonal antibodies. Gynecol Oncol. 1997;67(3):259–71.

    Article  CAS  PubMed  Google Scholar 

  97. Garinchesa P, Sakamoto J, Welt S, Real F, Rettig W, Old L. Organ-specific expression of the colon cancer antigen A33, a cell surface target for antibody-based therapy. Int J Oncol. 1996;9(3):465–71.

    CAS  PubMed  Google Scholar 

  98. Zanzonico P, Carrasquillo JA, Pandit-Taskar N, O’Donoghue JA, Humm JL, Smith-Jones P, et al. PET-based compartmental modeling of (124)I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer. Eur J Nucl Med Mol Imaging. 2015;42(11):1700–6.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P, et al. Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neurooncol. 2010;97(3):409–18.

    Article  PubMed  Google Scholar 

  100. Ahmed M, Cheng M, Zhao Q, Goldgur Y, Cheal SM, Guo HF, et al. Humanized affinity-matured monoclonal antibody 8H9 has potent antitumor activity and binds to FG loop of tumor antigen B7-H3. J Biol Chem. 2015;290(50):30018–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinia Ryan.

Ethics declarations

Conflict of interest

Davinia Ryan declares no potential conflicts of interest. Lisa Bodei consultant fees from AAA and Ipsen Pharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Nuclear Medicine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryan, D., Bodei, L. Radioimmunotherapy in Oncology. Curr Radiol Rep 5, 64 (2017). https://doi.org/10.1007/s40134-017-0258-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0258-0

Keywords

Navigation