Skip to main content

Advertisement

Log in

Neuroimaging of Pediatric Metabolic Disorders with Emphasis on Diffusion-Weighted Imaging and MR Spectroscopy: A Pictorial Essay

  • Pediatrics (L Averill, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although individually rare, metabolic brain disorders together account for significant disease burden in infants and children. MRI evaluation of these disorders is daunting, but using a pattern-based approach is helpful. Here we present 10 of the most commonly encountered metabolic brain disorders, highlighting specific features on DWI and MR spectroscopy that help narrow the differential diagnosis.

Recent findings

A number of metabolic diseases result in elevated lactate at 1.3 ppm in affected areas. Other metabolite derangements, though, are more helpful in determining the underlying disease. MR spectroscopy showing elevated glycine at 3.55 ppm indicates nonketotic hyperglycinemia, while markedly elevated NAA at 2.0 ppm is characteristic of Canavan disease. NAA will be low in diseases causing neuronal loss, and can be even absent in Alexander disease. Absent or severely low creatine at 3.0 ppm is specific for the family of creatine deficiency syndromes. The pattern of restricted diffusion seen with DWI can also point to a specific diagnosis, especially with brainstem and cerebellar white matter involvement seen with maple syrup urine disease. Additionally, both MR spectroscopy and DWI can be used to follow disease progression or response to therapy.

Summary

DWI and MR spectroscopy are useful adjuncts to anatomic brain imaging in the evaluation of pediatric metabolic brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as follows: • Of importance •• Of major importance

  1. Menkes JH, Hurst PL, Craig JM. A new syndrome: progressive familial infantile cerebral dysfunction associated with an unusual urinary substance. Pediatrics. 1954;14:452–67.

    Google Scholar 

  2. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. Seattle: University of Washington; 1993.

    Google Scholar 

  3. •• Patay Z, Blaser SI, Poretti A et al. Neurometabolic diseases of childhood. Pediatr Radiol (2015);45 (Suppl 3): S473–S484. Neurometabolic diseases are subdivided in various groups depending on the predominantly involved tissue, the involved metabolic processes and primary age of the child at presentation with comprehensive tabulation of selected disorders.

  4. Puffenberger EG. Genetic heritage of the old order mennonites of Southeastern Pennsylvania. Am J Med Genet. 2003;121C:18–31.

    Article  CAS  PubMed  Google Scholar 

  5. Carleton SM, Peck DS, Grasela J, et al. DNA carrier testing and newborn screening for maple syrup urine disease in old order mennonite communities. Genet Test Mol Biomark. 2010;14:205–8.

    Article  CAS  Google Scholar 

  6. Morton DH, Strauss KA, Robinson DL, et al. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109:999–1008.

    Article  PubMed  Google Scholar 

  7. Chuang JL, Davie JR, Chinsky JM, et al. Molecular and biochemical basis of intermediate maple syrup urine disease. Occurrence of homozygous G245R and F364C mutations at the E1 alpha locus of Hispanic-Mexican patients. J Clin Invest. 1995;95:954–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Indiran V, Gunaseelan RE. Neuroradiological findings in maple syrup urine disease. J Pediatr Neurosci. 2013;8:31–3.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jain A, Jagdeesh K, Mane R, et al. Imaging in classic form of maple syrup urine disease: a rare metabolic central nervous system. J Clin Neonatol. 2013;2:98–100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cavalleri F, Berardi A, Burlina A, et al. Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology. 2002;44:499–502.

    Article  CAS  PubMed  Google Scholar 

  11. Jan W, Zimmerman RA, Wang ZJ, et al. MR diffusion imaging and MR spectroscopy of maple syrup urine disease during acute metabolic decompensation. Neuroradiology. 2003;45:393–9.

    Article  PubMed  Google Scholar 

  12. Applegarth DA, Toone JR. Nonketotic hyperglycinemia (glycine encephalopathy): laboratory diagnosis. Mol Genet Metab. 2001;74:139–46.

    Article  CAS  PubMed  Google Scholar 

  13. Kanekar S, Byler D. Characteristic MRI findings in neonatal nonketotic hyperglycinemia due to sequence changes in GLDC gene encoding the enzyme glycine decarboxylase. Metab Brain Dis. 2013;28:717–20.

    Article  CAS  PubMed  Google Scholar 

  14. Hoover-Fong JE, Shah S, Van Hove JLK, et al. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology. 2004;63:1847–53.

    Article  CAS  PubMed  Google Scholar 

  15. • Poretti A, Blaser SI, Lequin MH, et al. Neonatal neuroimaging findings in inborn errors of metabolism. J Magn Reson Imaging 2013;37:294–312. The authors of the above article provide imaging findings of a broader spectrum of pediatric metabolic disorders beyond the scope of our article.

  16. Press GA, Barshop BA, Haas RH, et al. Abnormalities of the brain in nonketotic hyperglycinemia: MR manifestations. Am J Neuroradiol. 1989;10:315–21.

    CAS  PubMed  Google Scholar 

  17. Agamanolis DP, Potter JL, Herrick MK, et al. The neuropathology of glycine encephalopathy: a report of five cases with immunohistochemical and ultrastructural observations. Neurology. 1982;32:975–85.

    Article  CAS  PubMed  Google Scholar 

  18. Mourmans J, Majoie CBLM, Barth PG, et al. Sequential MR imaging changes in nonketotic hyperglycinemia. Am J Neuroradiol. 2006;27:208–11.

    CAS  PubMed  Google Scholar 

  19. Gerritsen T, Kaveggia E, Waisman HA. A new type of hyperglycinemia with hyperoxaluria. Pediatrics. 1965;36:882.

    CAS  PubMed  Google Scholar 

  20. Shah DK, Tingay DG, Fink AM, et al. Magnetic resonance imaging in neonatal nonketotic hyperglycinemia. Pediatr Neurol. 2005;33(1):50–2.

    Article  PubMed  Google Scholar 

  21. Viola A, Chabrol B, Nicoli F, et al. Magnetic resonance spectroscopy study of glycine pathways in nonketotic hyperglycinemia. Pediatr Res. 2002;52:292–300.

    Article  CAS  PubMed  Google Scholar 

  22. Huisman T, Thiel T, Steinmann B, et al. Proton magnetic resonance spectroscopy of the brain of a neonate with nonketotic hyperglycinemia: in vivo–in vitro (ex vivo) correlation. Eur Radiol. 2002;12:858–61.

    Article  CAS  PubMed  Google Scholar 

  23. Chung W-S, Chao M-C, Lin F-J, et al. Magnetic resonance findings in an infant with nonketotic hyperglycinemia. J Radiol Sci. 2011;36:177–81.

    Google Scholar 

  24. Traeger EC, Rapin I. The clinical course of Canavan disease. Pediatr Neurol. 1998;18:207–12.

    Article  CAS  PubMed  Google Scholar 

  25. Namboodiri AM, Peethambaran A, Mathew R, et al. Canavan disease and the role of N-acetylaspartate in myelin synthesis. Mol Cell Endocrinol. 2006;252:216–23.

    Article  CAS  PubMed  Google Scholar 

  26. Merrill ST, Nelson GR, Longo N, et al. Cytotoxic edema and diffusion restriction as an early pathoradiologic marker in canavan disease: case report and review of the literature. Orphanet J Rare Dis. 2016;11:169.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McAdams H, Geyer C, Done S, et al. Canavan disease: CT and MR imaging of the brain. AJNR AmJNeuroradiol. 1990;11:805–10.

    Google Scholar 

  28. Cakmakci H, Pekcevik Y, Yis U, et al. Diagnostic value of proton MR spectroscopy and diffusion-weighted MR imaging in childhood inherited neurometabolic brain diseases and review of the literature. Eur J Radiol. 2010;74:e161–71.

    Article  PubMed  Google Scholar 

  29. Cheon J-E, Kim I-O, Hwang YS, et al. Leukodystrophy in children: a pictorial review of MR imaging features. RadioGraphics. 2002;22:461–76.

    Article  PubMed  Google Scholar 

  30. •• Ibrahim M, Parmar HA, Hoefling N, et al. Inborn errors of metabolism: combining clinical and radiologic clues to solve the mystery. Am J Roentgenol 2014;202:W315–27. Pediatric metabolic disease can be challenging to diagnose because of the wide spectrum and overlap of clinical and radiologic findings. The authors of this article provide a systematic approach that employs categorizing these diseases into groups according to the extent of white matter and grey matter involvement, hypomyelination versus dysmyelination disorders, and lobar versus deep white matter involvement. Together with the clinical information, this approach can be helpful to the radiologist in narrowing down the differential diagnosis and ultimately in making the appropriate diagnosis.

  31. Karimzadeh P, Jafari N, Nejad Biglari H, et al. The clinical features and diagnosis of Canavan’s disease : a case series of iranian patients. Iran J child Neurol. 2014;8:66–71.

    PubMed  PubMed Central  Google Scholar 

  32. Longo N, Ardon O, Vanzo R, et al. Disorders of creatine transport and metabolism. Am J Med Genet Part C. 2011;157:72–8.

    Article  CAS  Google Scholar 

  33. Leuzzi V, Mastrangelo M, Battini R, et al. Inborn errors of creatine metabolism and epilepsy. Epilepsia. 2013;54:217–27.

    Article  CAS  PubMed  Google Scholar 

  34. Bianchi MC, Tosetti M, Battini R, et al. Treatment monitoring of brain creatine deficiency syndromes: A 1H- and 31P-MR spectroscopy study. Am J Neuroradiol. 2007;28:548–54.

    CAS  PubMed  Google Scholar 

  35. Ardon O, Procter M, Mao R, et al. Creatine transporter deficiency: Novel mutations and functional studies. Mol Genet Metab Reports. 2016;8:20–3.

    Article  CAS  Google Scholar 

  36. Salomons GS, Van Dooren SJM, Verhoeven NM, et al. X-linked creatine-transporter gene (SLC6A8) defect : a new creatine- deficiency syndrome. Am J Hum Genet. 2001;68(6):1497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bianchi MC, Tosetti M, Fornai F, et al. Reversible brain creatine deficiency in two sisters with normal blood creatine level. Ann Neurol. 2000;47:511–3.

    Article  CAS  PubMed  Google Scholar 

  38. Schulze A, Bachert P, Schlemmer H, et al. Lack of creatine in muscle and brain in an adult with GAMT deficiency. Ann Neurol. 2003;53:248–51.

    Article  CAS  PubMed  Google Scholar 

  39. Stöckler S, Holzbach U, Hanefeld F, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res. 1994;36:409–13.

    Article  PubMed  Google Scholar 

  40. Ganesan V, Johnson A, Connelly A, et al. Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol. 1997;17:155–7.

    Article  CAS  PubMed  Google Scholar 

  41. Stockler-Ipsiroglu S, van Karnebeek C, Longo N, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab. 2014;111:16–25.

    Article  CAS  PubMed  Google Scholar 

  42. DeGrauw TJ, Salomons GS, Cecil KM, et al. Congenital creatine transporter deficiency. Neuropediatrics. 2002;33:232–8.

    Article  CAS  PubMed  Google Scholar 

  43. Declan O, Ryan S, Gajja S, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: late onset of movement disorder and preserved expressive language. Dev Med Child Neurol. 2009;51(5):404–7.

    Article  Google Scholar 

  44. Eicke W-J. Polycystische Umwandlung des Marklagers mit progredientem Verlauf. Arch für Psychiatr und Nervenkrankheiten Ver mit Zeitschrift für die Gesamte Neurol und Psychiatr. 1962;203:599–609.

    Article  Google Scholar 

  45. Hanefeld F, Holzbach U, Kruse B, et al. Diffuse white matter disease in three children: an encephalopathy with unique features on magnetic resonance imaging and proton magnetic resonance spectroscopy. Neuropediatrics. 1993;24:244–8.

    Article  CAS  PubMed  Google Scholar 

  46. Schiffmann R, Moller JR, Trapp BD, et al. Childhood Ataxia with Diffuse Central Nervous System Hypomyelination. 1994. [Epub ahead of print].

  47. van der Knaap MS, Pronk JC, Scheper GC. Vanishing white matter disease. Lancet Neurol. 2006;5:413–23.

    Article  PubMed  Google Scholar 

  48. van der Knaap MS, Barth PG, Gabreëls FJ, et al. A new leukoencephalopathy with vanishing white matter. Neurology. 1997;48:845–55.

    Article  PubMed  Google Scholar 

  49. Fogli A, Dionisi-Vici C, Deodato F, et al. A severe variant of childhood ataxia with central hypomyelination/vanishing white matter leukoencephalopathy related to EIF21B5 mutation. Neurology. 2002;59:1966–8.

    Article  CAS  PubMed  Google Scholar 

  50. Şenol U, Haspolat S, Karaali K, et al. Case report: MR imaging of vanishing white matter. AJR Am J Roentgenol. 2000;175:826–8.

    Article  PubMed  Google Scholar 

  51. Schiffmann R, Fogli A, van der Knaap MS, et al. Childhood ataxia with central nervous system hypomyelination/vanishing white matter. Seattle: University of Washington; 2003.

    Google Scholar 

  52. Vermeulen G, Seidl R, Mercimek-Mahmutoglu S, et al. Fright is a provoking factor in vanishing white matter disease. Ann Neurol. 2005;57:560–3.

    Article  PubMed  Google Scholar 

  53. Schiffmann R, Moller JR, Trapp BD, et al. Childhood Ataxia with D&s central nervous system hypomyelination. 1994. [Epub ahead of print].

  54. van der Voorn JP, Pouwels PJW, Hart AAM, et al. Childhood white matter disorders: quantitative MR imaging and spectroscopy. Radiology. 2006;241:510–7.

    Article  PubMed  Google Scholar 

  55. Engelen M, Kemp S, de Visser M, et al. X-linked adrenoleukodystrophy (X-ALD): clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J Rare Dis. 2012;7:51.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kemp S, Berger J, Aubourg P. X-linked adrenoleukodystrophy: clinical, metabolic, genetic and pathophysiological aspects. Biochim Biophys Acta. 2012;1822:1465–74.

    Article  CAS  PubMed  Google Scholar 

  57. Moser HW. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain. 1997;120:1485–508.

    Article  PubMed  Google Scholar 

  58. Kim JH, Kim HJ. Childhood X-linked adrenoleukodystrophy: clinical-pathologic overview and MR imaging manifestations at initial evaluation and follow-up. RadioGraphics. 2005;25:619–31.

    Article  PubMed  Google Scholar 

  59. Loes DJ, Hite S, Moser H, et al. Adrenoleukodystrophy: a scoring method for brain MR observations. Am J Neuroradiol. 1994;15:1761–6.

    CAS  PubMed  Google Scholar 

  60. Patel PJ, Kolawole TM, Malabarey TM, et al. Pediatric radiology adrenoleukodystrophy: CT and MRI findings. 1995;25:256–8.

    Article  CAS  Google Scholar 

  61. Melhem ER, Loes DJ, Georgiades CS, et al. X-linked adrenoleukodystrophy: The role of contrast-enhanced MR imaging in predicting disease progression. Am J Neuroradiol. 2000;21:839–44.

    CAS  PubMed  Google Scholar 

  62. Rajanayagam V, Grad J, Krivit W, et al. Proton MR spectroscopy of childhood adrenoleukodystrophy. Am J Neuroradiol. 1996;17:1013–24.

    CAS  PubMed  Google Scholar 

  63. Sawaishi Y. Review of Alexander disease: Beyond the classical concept of leukodystrophy. Brain Dev. 2009;31:493–8.

    Article  PubMed  Google Scholar 

  64. Brenner M, Johnson AB, Boespflug-Tanguy O, et al. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet. 2001;27:117–20.

    Article  CAS  PubMed  Google Scholar 

  65. Springer S, Erlewein R, Naegele T, et al. Alexander disease—classification revisited and isolation of a neonatal form. Neuropediatrics. 2000;31:86–92.

    Article  CAS  PubMed  Google Scholar 

  66. Pridmore CL, Baraitser M, Harding B, et al. Alexander’s disease : clues to diagnosis. J Child Neurol. 1993;8:134–44.

    Article  CAS  PubMed  Google Scholar 

  67. Messing A, Goldman J, Johnson A, et al. Alexander disease: new insights from genetics. J Neuropathol Exp Neurol. 2001;60:563–73.

    Article  CAS  PubMed  Google Scholar 

  68. Van der Knaap MS, Naidu S, Breiter SN, et al. Alexander disease: diagnosis with MR imaging. Am J Neuroradiol. 2001;22:541–52.

    PubMed  Google Scholar 

  69. Balbi P, Salvini S, Fundarò C, et al. The clinical spectrum of late-onset alexander disease a systematic literature review. J Neurol 2010;257:1955–2.

  70. Farina L, Pareyson D, Minati L, et al. Can MR imaging diagnose adult-onset Alexander disease? Am J Neuroradiol. 2008;29:1190–6.

    Article  CAS  PubMed  Google Scholar 

  71. Pareyson D, Fancellu R, Mariotti C, et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain. 2008;131:2321–31.

    Article  PubMed  Google Scholar 

  72. Van Der Knaap MS, Salomons GS, Li R, et al. Unusual variants of Alexander’s disease. Ann Neurol. 2005;57:327–38.

    Article  PubMed  Google Scholar 

  73. Schmidt H, Kretzschmar B, Lingor P, et al. Acute onset of adult Alexander disease. J Neurol Sci. 2013;331:152–4.

    Article  CAS  PubMed  Google Scholar 

  74. Muralidharan CG, Tomar RPS, Aggarwal R. MRI diagnosis of Alexander disease. South African J Radiol. 2012;16:116–7.

    Article  Google Scholar 

  75. Andreas P, Fluharty AL, Fluharty CB, et al. Molecular basis of different forms of metachromatic leukodystrophy. N Engl J Med. 1991;324:18–22.

    Article  Google Scholar 

  76. Kim TS, Kim IO, Kim WS, et al. MR of childhood metachromatic leukodystrophy. Am J Neuroradiol. 1997;18:733–8.

    CAS  PubMed  Google Scholar 

  77. Eichler F, Grodd W, Grant E, et al. Metachromatic leukodystrophy: A scoring system for brain MR imaging observations. Am J Neuroradiol. 2009;30:1893–7.

    Article  CAS  PubMed  Google Scholar 

  78. Patay Z. Diffusion-weighted MR imaging in leukodystrophies. Eur Radiol. 2005;15:2284–303.

    Article  PubMed  Google Scholar 

  79. Zafeiriou DI, Kontopoulos EE, Michelakakis HM, et al. Neurophysiology and MRI in late-infantile metachromatic leukodystrophy. Pediatr Neurol. 1999;21:843–6.

    Article  CAS  PubMed  Google Scholar 

  80. Haltia T, Palo J, Haltia M, et al. Juvenile metachromatic leukodystrophy. Arch Neurol. 1980;37:42–6.

    Article  CAS  PubMed  Google Scholar 

  81. Waltz G, Harik SI, Kaufman B. Adult metachromatic leukodystrophy: value of computed tomographic scanning and magnetic resonance imaging of the brain. Arch Neurol. 1987;44:225–7.

    Article  CAS  PubMed  Google Scholar 

  82. Faerber EN, Melvin JJ, Smergel EM. MRI appearances of metachromatic leukodystrophy. Pediatr Radiol. 1999;29:669–72.

    Article  CAS  PubMed  Google Scholar 

  83. Reider-Grosswasser I, Bornstein N. CT and MRI in late-onset metachromatic leukodystrophy. Acta Neurol Scand. 1987;75:64–9.

    Article  CAS  PubMed  Google Scholar 

  84. Van Der Voorn JP, Pouwels PJW, Kamphorst W, et al. Histopathologic correlates of radial stripes on MR images in lysosomal storage disorders. Am J Neuroradiol. 2005;26:442–6.

    PubMed  Google Scholar 

  85. Sener RN. Metachromatic leukodystrophy: diffusion MR imaging findings. AJNR Am J Neuroradiol. 2002;23:1424–6.

    PubMed  Google Scholar 

  86. Sener RN. Metachromatic Leukodystrophy. Diffusion MR imaging and proton MR spectroscopy. Acta Radiol. 2003;44:440–3.

    CAS  PubMed  Google Scholar 

  87. Maia ACM, Da Rocha AJ, Da Silva CJ, et al. Multiple cranial nerve enhancement: a new MR imaging finding in metachromatic leukodystrophy. Am J Neuroradiol. 2007;28:999.

    Article  PubMed  Google Scholar 

  88. Ashrafi M, Ghofrani M, Ghojevand N. Leigh synrome: clinical and paraclinical study. Acta Med Iran. 2002;40:236–40.

    Google Scholar 

  89. • Bray MD, Mullins ME. Metabolic white matter diseases and the utility of MR spectroscopy. Radiol Clin North Am 2014;52:403–11. An easy-to read article by these authors provides background information on Magnetic resonance spectroscopy and its utility in aiding the diagnosis of metabolic white matter diseases.

  90. Sofou K, De Coo IFM, Isohanni P, et al. A multicenter study on Leigh syndrome: disease course and predictors of survival. Orphanet J Rare Dis. 2014;9:52.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Van Meir EG, Hadjipanayis CG, Norden AD, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA A Cancer J Clin. 2010;60:166–93.

    Article  Google Scholar 

  92. Lee H-F, Tsai C-R, Chi C-S, et al. Leigh syndrome: clinical and neuroimaging follow-up. Pediatr Neurol. 2009;40:88–93.

    Article  PubMed  Google Scholar 

  93. Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol. 2000;21:1502–9.

    CAS  PubMed  Google Scholar 

  94. Martin E, Burger R, Wiestler O, et al. Pediatric Radiology Short reports Brainstem lesion revealed by MRI in a case of Leigh’ s disease with respiratory failure. Pediatr Radiol. 1990;20:349–50.

    Article  CAS  PubMed  Google Scholar 

  95. Farina L, Chiapparini L, Uziel G, et al. MR findings in Leigh syndrome with COX deficiency and SURF-1 mutations. Am J Neuroradiol. 2002;23:1095–100.

    PubMed  Google Scholar 

  96. Bonfante E, Koenig MK, Adejumo RB, et al. The neuroimaging of Leigh syndrome: case series and review of the literature. Pediatr Radiol. 2016;46:443–51.

    Article  PubMed  Google Scholar 

  97. Parmar A, Khare S, Srivastav V. Pantothenate—kinase associated neurodegeneration. JAPU. 2012;60:74–6.

    Google Scholar 

  98. Hakim A, Rozeik C, Fedorcak M. Pantothenate kinase-associated neurodegeneration (PKAN) in a child with Down syndrome. A case report and follow-up with MRI. BJR Case Rep 2015:1–3.

  99. Thomas M, Hayflick SJ, Jankovic J. Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden-Spatz syndrome) and pantothenate. Mov Disord. 2004;19:36–42.

    Article  PubMed  Google Scholar 

  100. Hashemi H, Rokni Y, Adibi A. Atypical pantothenate-kinase associated neurodegeneration. Iran J Radiol. 2008;5:87–91.

    Google Scholar 

  101. Kruer M, Boddaert N, Schneider S, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR AmJNeuroradiol. 2012;33:407–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay V. R. Kandula.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

Kofi-Buaku Atsina and Vinay V. R. Kandula each declare no potential conflicts of interest. Lauren W. Averill is a section editor for Current Radiology Reports.

Additional information

This article is part of the Topical Collection on Pediatrics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atsina, KB., Averill, L.W. & Kandula, V.V.R. Neuroimaging of Pediatric Metabolic Disorders with Emphasis on Diffusion-Weighted Imaging and MR Spectroscopy: A Pictorial Essay. Curr Radiol Rep 5, 60 (2017). https://doi.org/10.1007/s40134-017-0251-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0251-7

Keywords

Navigation