Skip to main content
Log in

Gastrointestinal Imaging: Emerging Role of Dual-Energy Computed Tomography

  • Dual Energy CT (S Nicolaou and M Mohammed, Section Editors)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The clinical and research applications of dual-energy computed tomography (DECT) are evolving and exponentially growing. In this article, we focus on the different applications of DECT for gastrointestinal (GI) imaging. The basic principles of DECT are important to understand its ability to differentiate tissues via application of two energy spectra.

Recent Findings

Different DECT techniques and scanners currently used are discussed to highlight their advantages and limitations for generating dual-energy datasets. The advantage of generating virtual non-contrast, virtual monoenergetic, and iodine overlay images will be described for evaluation of bowel pathology, including inflammatory, vascular, and neoplastic conditions, as well as in the setting of acute trauma.

Summary

This review focuses on the applications of DECT across wide range of GI pathologies throughout the large and small bowel. With continuous research and further development of this technology, the use of DECT in imaging and evaluating the bowel holds a promising future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42. This reference described the functions and foundations of dual-energy CT’s applications within the abdomen. They also went into detail describing the principles on which dual energy CT operate and outlined the various sequences that can be used with this feature.

  2. Patel BN, Alexander L, Allen B, Berland L, Borhani A, Mileto A, et al. Dual-energy CT workflow: multi-institutional consensus on standardization of abdominopelvic MDCT protocols. Abdom Radiol. 2016;6:1–12.

    Google Scholar 

  3. Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol. 2012;199(5):16–25.

    Article  Google Scholar 

  4. Rutherford RA, Pullan BR. Isherwood I Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology. 1976;11(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  5. Kruger RA, Riederer SJ, Mistretta CA. Relative properties of tomography, K-edge imaging and K-edge tomography. Med Phys. 1977;4(3):244–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nogueira M, Tardaguila G, Mera D, Martinez M, Tardaguila FM. Acute mesenteric ischemia: the actual role of dual-energy CT and its future potential. Eur Soc Radiol. 2016. doi:10.1594/ecr2016/C-0666.

    Google Scholar 

  7. Heye T, Dual-Energy CT. Applications in the Abdomen. AJR Am J Roentgenol. 2012;199:S64–70.

    Article  PubMed  Google Scholar 

  8. Leng S, Shiung M, Ai S, Qu M, Vrtiska TJ, Grant KL, et al. Feasibility of discriminating uric acid from non-uric acid renal stones using consecutive spatially registered low-and high-energy scans obtained on a conventional CT scanner. Am J Roentgenol. 2015;204:92–7.

    Article  Google Scholar 

  9. Johnson TRC, Krauß B, Sedlmair M, Grasruck M, Bruder H, Morhard D, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–7.

    Article  PubMed  Google Scholar 

  10. Primak AN, Ramirez Giraldo JC, Liu X, Yu L, McCollough CH. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36(4):1359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silva AC, Morse BG, Hara AK, Paden RG, Hongo N, Pavlicek W. Dual-energy (spectral) CT: applications in abdominal imaging. RadioGraphics. 2011;31(4):1031–46.

    Article  PubMed  Google Scholar 

  12. Wu L, Xu J, Yin Y, Qu X. Usefulness of CT angiography in diagnosing acute gastrointestinal bleeding: A meta-analysis. World J Gastroenterol. 2010;16(31):3957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Grasruck M, Kappler S, Reinwand M, Stierstorfer K. Dual energy with dual source CT and kVp switching with single source CT: a comparison of dual energy performance. Proc SPIE. 2009;7258(72):583R.

    Google Scholar 

  14. Wu EH, Kim SY, Wang ZJ, Chang WC, Zhao LQ, Yeh BM. Appearance and frequency of gas interface artifacts involving small bowel on rapid-voltage-switching dual-energy CT iodine-density images. Am J Roentgenol. 2016;206(2):301–6.

    Article  CAS  Google Scholar 

  15. Fornaro J, Leschka S, Hibbeln D, Butler A, Anderson N, Pache G, et al. Dual- and multi-energy CT: approach to functional imaging. Insights Imaging. 2011;2(2):149–59.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hartman R, Kawashima A, Takahashi N, Silva A, Vrtiska T, Leng S, et al. Applications of dual-energy ct in urologic imaging: an update. Radiol Clin North Am. 2012;50(2):191–205.

    Article  PubMed  Google Scholar 

  17. Yu L, Christner J, Leng S, Wang J, Fletcher JG, McCollough CH. Virtual monochromatic imaging in dual-source dual-energy CT: radiation dose and image quality. Med Phys. 2011;38(12):6371.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu L, Leng S, McCollough CH. Dual-energy CT-based monochromatic imaging. AJR Am J Roentgenol. 2012;199(5):9–15.

    Article  Google Scholar 

  19. Holmes DR, Fletcher JG, Apel A, Huprich JE. Evaluation of non-linear blending in dual-energy computed tomography. NIH Public Access. 2009;68(3):409–13.

    Google Scholar 

  20. Ascenti G, Krauss B, Mazziotti S, Mileto A, Settineri N, Vinci S, et al. Dual-energy computed tomography (DECT) in renal masses. Nonlinear versus linear blending. Acad Radiol. 2012;19(10):1186–93.

    Article  PubMed  Google Scholar 

  21. Ascenti G, Mileto A, Krauss B, Gaeta M, Blandino A, Scribano E, et al. Distinguishing enhancing from nonenhancing renal masses with dual-source dual-energy CT: iodine quantification versus standard enhancement measurements. Eur Radiol. 2013;23(8):2288–95.

    Article  PubMed  Google Scholar 

  22. Lourenco P, Rawski R, Mohammed M, Darras K, Nicolaou S, McLaughlin P. Dual-energy computed tomography and iodine mapping are superior to conventional CT in the diagnosis of early and established intestinal ischemia and infarction. Radiological Society of North America 2015 Scientific Assembly and Annual Meeting, November 29–December 4, 2015, Chicago IL. www.archive.rsna.org/2015/15016800.html. Accessed 20 April 2017.

  23. Lourenco P, Rawski R, McLaughlin P, O’Connell T, Nicolaou S. Dual-energy CT and virtual monoenergetic reconstructions: utility of novel and basic algorithms in assessment of intestinal wall enhancement and applications for acute intestinal Ischemia. Radiological Society of North America 2015 Scientific Assembly and Annual Meeting, November 29–December 4, 2015, Chicago IL. www.archive.rsna.org/2015/15016859.html. Accessed 20 April 2017.

  24. Qu M, Ehman E, Fletcher JG, Huprich JE, Hara AK, Silva AC, et al. Toward biphasic computed tomography (CT) enteric contrast: material classification of luminal bismuth and mural iodine in a small-bowel phantom using dual-energy CT. J Comput Assist Tomogr. 2012;36(5):554–9.

    Article  PubMed  Google Scholar 

  25. Mongan J, Rathnayake S, Fu Y, Gao D-W, Yeh BM. Extravasated contrast material in penetrating abdominopelvic trauma: dual-contrast dual-energy CT for improved diagnosis–preliminary results in an animal model. Radiology. 2013;268(3):738–42.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rathnayake S, Mongan J, Torres AS, Colborn R, Gao DW, Yeh BM, et al. In vivo comparison of tantalum, tungsten, and bismuth enteric contrast agents to complement intravenous iodine for double-contrast dual-energy CT of the bowel. Contrast Media Mol Imaging. 2016;11(4):254–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kilcoyne A, Kaplan JL, Gee MS. Inflammatory bowel disease imaging: current practice and future directions. World J Gastroenterol. 2016;22(3):917–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Fulwadhva UP, Wortman JR, Sodickson AD. Use of dual-energy CT and iodine maps in evaluation of bowel disease. radiographics. 2016;36:393–406. This reference has a detailed description of the current utilities od DECT in assessment of bowel disease as well as its limitations and future diagnostic potential.

  29. ElSayes K, Al-Hawar M, Jagdish J, Ganesh H, Platt J. CT Enterography: principles, trends, and interpretation of findings. Radiographics. 2010;30:1955–71.

    Article  PubMed  Google Scholar 

  30. Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM, Dinter DJ, et al. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012;47(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  31. Rao P, Rhea J, Novelline R, Mostafavi A, McCabe C. Effect of computed tomography of the appendix on treatment of patients and use of hospital resources. Cancer Chemother Pharmacol. 1998;338:141–6.

    CAS  Google Scholar 

  32. Pinto Leite N, Pereira JM, Cunha R, Pinto P, Sirlin C. CT evaluation of appendicitis and its complications: imaging techniques and key diagnostic findings. Am J Roentgenol. 2005;185(2):406–17.

    Article  Google Scholar 

  33. Singh A, Gervais D, Hanh P, Sagar P, Meuller P, Novelline R. Appendagitis and its mimics 1 objectives. RadioGraphics. 2005;1605(6):1521–34.

    Article  Google Scholar 

  34. Neugut AI, Jacobson JS, Suh S, Mukherjee R, Arber N. The epidemiology of cancer of the small bowel. Cancer Epidemiol Prev Biomark. 1998;7(3):243–51.

    CAS  Google Scholar 

  35. Ganeshan D, Bhosale P, Yang T, Kundra V. Imaging features of carcinoid tumors of the gastrointestinal tract. AJR Am J Roentgenol. 2013;201(4):773–86.

    Article  PubMed  Google Scholar 

  36. • Shinya T, Inai R, Tanaka T, Akagi N, Sato S, Yoshino T, et al. Small bowel neoplasms: enhancement patterns and differentiation using post-contrast multiphasic multidetector CT. Abdom Radiol. 2016; 1–8. This reference described the use of dual energy CT to identify enhancement patterns associated with small bowel neoplasia. The usefulness in this paper is in their differentiation between the types of small bowel neoplasia—such as stromal and neuroendocrine tumors–and how they present with dual energy scanning.

  37. Martin SS, Pfeifer S, Wichmann JL, Albrecht MH, Leithner D, Lenga L, et al. Noise-optimized virtual monoenergetic dual- energy computed tomography: optimization of kiloelectron volt settings in patients with gastrointestinal stromal tumors. Abdom Radiol. 2016;42(3):718–26.

    Article  Google Scholar 

  38. Diculescu M, Jacob R, Croitoru A, Becheanu G, Popeneciu V. The important of histopathological and clinical variables in predicting the evolution of colon cancer. Rom J Gastroenterol. 2002;11(3):183–9.

    PubMed  Google Scholar 

  39. Gong HX, Zhang KB, Wu LM, Baigorri BF, Yin Y, Geng X, et al. Dual energy spectral CT imaging for colorectal cancer grading: a preliminary study. PLoS ONE. 2016;11(2):1–10.

    Google Scholar 

  40. Neri E, Turini F, Cerri F, Faggioni L, Vagli P, Naldini G, et al. Comparison of CT colonography versus conventional colonoscopy in mapping the segmental location of colon cancer before surgery. Abdom Imaging. 2010;35(5):589–95.

    Article  PubMed  Google Scholar 

  41. McArthur DR, Mehrzad H, Patel R, Dadds J, Pallan A, Karandikar SS, et al. CT colonography for synchronous colorectal lesions in patients with colorectal cancer: initial experience. Eur Radiol. 2010;20(3):621–9.

    Article  CAS  PubMed  Google Scholar 

  42. Schaeffer B, Johnson TRC, Mang T, Kreis ME, Reiser MF, Graser A. Dual-energy CT colonography for preoperative “one-stop” staging in patients with colonic neoplasia. Acad Radiol. 2014;21(12):1567–72.

    Article  PubMed  Google Scholar 

  43. Gollub MJ, Schwartz LH, Akhurst T. Update on colorectal cancer imaging. Radiol Clin N Am. 2007;45(1):85–118.

    Article  PubMed  Google Scholar 

  44. Chen CY, Hsu JS, Jaw TS, Wu DC, Shih MCP, Lee CH, et al. Utility of the iodine overlay technique and virtual nonenhanced images for the preoperative T staging of colorectal cancer by dual-energy CT with tin filter technology. PLoS ONE. 2014;9(12):1–16.

    Google Scholar 

  45. Kato T, Uehara K, Ishigaki S, Nihashi T, Arimoto A, Nakamura H, et al. Clinical significance of dual-energy CT-derived iodine quantification in the diagnosis of metastatic LN in colorectal cancer. Eur J Surg Oncol. 2015;41(11):1464–70.

    Article  CAS  PubMed  Google Scholar 

  46. Sun H, Hou XY, Xue HD, Li XG, Jin ZY, Qian JM, et al. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Eur J Radiol. 2015;84(5):884–91.

    Article  PubMed  Google Scholar 

  47. Geffroy Y, Rodallec M, Boulay-Coletta I. Multidetector CT angiography in acute gastrointestinal bleeding: why, when, and how. Radiographics. 2011;31:35–46.

    Article  Google Scholar 

  48. Graça BM, Freire PA, Brito JB, Ilharco JM, Carvalheiro VM, Caseiro-Alves F. Gastroenterologic and radiologic approach to obscure gastrointestinal bleeding: how, why, and when? Radiographics. 2010;30(1):235–52.

    Article  PubMed  Google Scholar 

  49. Yeh BM, Shepherd JA, Wang ZJ, Seong Teh H, Hartman RP, Prevrhal S. Dual-energy and low-kVp CT in the abdomen. Am J Roentgenol. 2009;193(1):47–54.

    Article  Google Scholar 

  50. Coursey CA, Nelson RC, Boll DT, Paulson EK, Ho LM, Neville AM, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30(4):1037–55.

    Article  PubMed  Google Scholar 

  51. Artigas JM, Martí M, Soto JA, Esteban H, Pinilla I, Guillén E. Multidetector CT angiography for acute gastrointestinal bleeding: technique and findings. Radiographics. 2013;33(5):1453–70.

    Article  PubMed  Google Scholar 

  52. Furukawa A, Kanasaki S, Kono N, Wakamiya M, Tanaka T, Takahashi M, et al. CT diagnosis of acute mesenteric ischemia from various causes. Am J Roentgenol. 2009;192(2):408–16.

    Article  Google Scholar 

  53. Ricci ZJ, Mazzariol FS, Kaul B, Oh SK, Chernyak V, Flusberg M, et al. Hollow organ abdominal ischemia, part II: clinical features, etiology, imaging findings and management ☆. J Clin Imaging. 2016;40(4):751–64.

    Article  Google Scholar 

  54. Dhatt HS, Behr SC, Miracle A, Wang ZJ, Yeh BM. Radiological evaluation of bowel Ischemia. Radiol Clin North Am. 2015;53(6):1241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  55. • Potretzke TA, Brace CL, Lubner MG, Sampson LA, Willey BJ, Lee FT. Early small-bowel ischemia: dual-energy CT improves conspicuity compared with conventional CT in a swine model. Radiology. 2015;275(1):119–26. The importance of this references stems from the study’s investigation of monochromatic imaging of small bowel ischemia. Their reported values suggest a two-fold difference from what is currently seen with conventional CT.

  56. • Wallace AB, Raptis CA, Mellnick VM. Imaging of bowel Ischemia. Curr Radiol Rep. 2016;4(6):29. The importance of this reference is due to their subjective analysis of iodine overlays to discriminate between ischemic and perfused segments within the small bowel.

  57. Darras KE, Mclaughlin PD, Kang H, Black B, Walshe T, Chang SD, et al. Virtual monoenergetic reconstruction of contrast-enhanced dual energy CT at 70 keV maximizes mural enhancement in acute small bowel obstruction. Eur J Radiol. 2016;85(5):950–6.

    Article  PubMed  Google Scholar 

  58. Macari M, Babb J. Hemorrhage: CT evaluation. 2003:177–84.

  59. Tijssen MPM, Hofman PAM, Stadler AAR, Van Zwam W, De Graaf R, Van Oostenbrugge RJ, et al. The role of dual energy CT in differentiating between brain haemorrhage and contrast medium after mechanical revascularisation in acute ischaemic stroke. Eur Radiol. 2014;24(4):834–40.

    Article  CAS  PubMed  Google Scholar 

  60. Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. Differentiation of Hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. Am J Neuroradiol. 2012;33:1088–94.

    Article  CAS  PubMed  Google Scholar 

  61. Smith JE, Midwinter M, Lambert AW. Avoiding cavity surgery in penetrating torso trauma: the role of the computed tomography scan. Ann R Coll Surg Engl. 2010;92(6):486–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Shanmuganathan K, Mirvis SE, Chiu WC, Killeen KL, Hogan GJ, Scalea TM. Penetrating torso trauma: triple-contrast helical CT in peritoneal violation and organ injury–a prospective study in 200 patients. Radiology. 2004;231(3):775–84.

    Article  CAS  PubMed  Google Scholar 

  63. Mongan J, Rathnayake S, Fu Y, Gao D-W, Yeh BM. Extravasated contrast material in penetrating abdominopelvic trauma: dual-contrast dual-energy CT for improved diagnosis–preliminary results in an animal model. Radiology. 2013;268(3):738–42.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Brofman N, Atri M, Hanson J, Grinblat L, Chughtai T, Brenneman F. Evaluation of bowel and mesenteric blunt trauma with multidetector CT. Eur Rev Med Pharmacol Sci. 2015;19(9):1589–94.

    Google Scholar 

  65. Scaglione M, Iaselli F, Sica G, Feragalli B, Nicola R. Errors in imaging of traumatic injuries. Abdom Imaging. 2015;40(7):2091–8.

    Article  PubMed  Google Scholar 

  66. Iacobellis F, Ierardi AM, Mazzei MA, Biasina AM, Carrafiello G, Nicola R, et al. Dual-phase CT for the assessment of acute vascular injuries in high-energy blunt trauma: the imaging findings and management implications. Br J Radiol. 2016;89:201.

    Article  Google Scholar 

  67. Uyeda JW, Patino M, Sahani DV. Dual-energy CT in the acute abdomen. Curr Radiol Rep. 2015. doi:10.1007/s40134-015-0099-7.

    Google Scholar 

  68. Soto JA, Anderson SW. Multidetector CT of blunt abdominal trauma. Radiologys. 2012;265(3):678–93.

    Google Scholar 

  69. Stuhlfaut JW, Anderson SW, Soto JA. Blunt abdominal trauma: current imaging techniques and CT Findings in patients with Solid organ, bowel, and mesenteric injury. Semin Ultrasound, CT MRI. 2007;28(2):115–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faisal Khosa.

Ethics declarations

Conflict of interest

Ismail Tawakol Ali, Cyrus Thomas, Khaled Y. Elbanna, Mohammed F. Mohammed, and Ferco H. Berger each declare no potential conflicts of interest. Faisal Khosa is the recipient of the Canadian Association of Radiologists/Canadian Radiological Foundation Leadership Scholarship (2017).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Dual-Energy CT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I.T., Thomas, C., Elbanna, K.Y. et al. Gastrointestinal Imaging: Emerging Role of Dual-Energy Computed Tomography. Curr Radiol Rep 5, 31 (2017). https://doi.org/10.1007/s40134-017-0227-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0227-7

Keywords

Navigation