Skip to main content
Log in

State-of-the-Art CT Imaging of the Left Atrium

  • New Imaging Technologies (U J Schoepf, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Cardiac computed tomography (CT) angiography with its high spatial and temporal resolution is a robust anatomical imaging tool. Beyond coronary artery examination in suspected coronary artery disease, cardiac CT is a helpful modality to depict cardiac morphology in surgical and percutaneous structural interventions planning. Conditions related to the left atrium are diverse; therefore, the importance of CT imaging is becoming more frequent.

Recent Findings

Latest technological advancements allow for low radiation dose image acquisition along with improved image quality detailed visualization of the left atrium during interventional procedure planning. In addition, left atrial imaging provides additional information regarding stroke risk, cardiovascular outcomes, congestive heart failure, and arrhythmia mechanisms. Therefore, the left atrium has been proposed as a barometer of cardiac function and cardiovascular risk.

Summary

Cardiac CT has become an indispensable tool in the electrophysiology laboratory in the guidance of complex procedures, including trans-catheter pulmonary vein isolation in the treatment of drug-refractory atrial fibrillation. The detailed visualization of left atrial morphology and pulmonary vein anatomy is frequently helpful in achieving therapeutic success and avoiding complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kannel WB, Wolf PA, Benjamin EJ, Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: population-based estimates. Am J Cardiol. 1998;82(8A):2N–9N.

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998;98(10):946–52.

    Article  CAS  PubMed  Google Scholar 

  3. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22(8):983–8.

    Article  CAS  PubMed  Google Scholar 

  4. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271(11):840–4.

    Article  CAS  PubMed  Google Scholar 

  5. Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR Jr, Ilstrup DM, et al. The natural history of lone atrial fibrillation. A population-based study over three decades. N Engl J Med. 1987;317(11):669–74. doi:10.1056/NEJM198709103171104.

    Article  CAS  PubMed  Google Scholar 

  6. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med. 1982;306(17):1018–22. doi:10.1056/NEJM198204293061703.

    Article  CAS  PubMed  Google Scholar 

  7. Camm AJ, Lip GY, De Caterina R, Savelieva I, Atar D, Hohnloser SH, et al. 2012 focused update of the ESC Guidelines for the management of atrial fibrillation: an update of the 2010 ESC Guidelines for the management of atrial fibrillation–developed with the special contribution of the European Heart Rhythm Association. Europace. 2012;14(10):1385–413. doi:10.1093/europace/eus305.

    Article  PubMed  Google Scholar 

  8. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, et al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110(9):1042–6. doi:10.1161/01.CIR.0000140263.20897.42.

    Article  PubMed  Google Scholar 

  9. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130(23):2071–104. doi:10.1161/CIR.0000000000000040.

    Article  PubMed  Google Scholar 

  10. Walters TE, Ellims AH, Kalman JM. The role of left atrial imaging in the management of atrial fibrillation. Prog Cardiovasc Dis. 2015;58(2):136–51. doi:10.1016/j.pcad.2015.07.010.

    Article  PubMed  Google Scholar 

  11. Donal E, Lip GY, Galderisi M, Goette A, Shah D, Marwan M, et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2016;. doi:10.1093/ehjci/jev354.

    Google Scholar 

  12. Sra J, Narayan G, Krum D, Malloy A, Cooley R, Bhatia A, et al. Computed tomography-fluoroscopy image integration-guided catheter ablation of atrial fibrillation. J Cardiovasc Electrophysiol. 2007;18(4):409–14. doi:10.1111/j.1540-8167.2006.00734.x.

    Article  PubMed  Google Scholar 

  13. Niinuma H, George RT, Arbab-Zadeh A, Lima JA, Henrikson CA. Imaging of pulmonary veins during catheter ablation for atrial fibrillation: the role of multi-slice computed tomography. Europace. 2008;10(Suppl 3):iii14–21. doi:10.1093/europace/eun230.

    PubMed  Google Scholar 

  14. Schwartzman D, Lacomis J, Wigginton WG. Characterization of left atrium and distal pulmonary vein morphology using multidimensional computed tomography. J Am Coll Cardiol. 2003;41(8):1349–57.

    Article  PubMed  Google Scholar 

  15. Zou H, Zhang Y, Tong J, Liu Z. Multidetector computed tomography for detecting left atrial/left atrial appendage thrombus: a meta-analysis. Intern Med J. 2015;45(10):1044–53. doi:10.1111/imj.12862.

    Article  CAS  PubMed  Google Scholar 

  16. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6(2):185–94. doi:10.1161/CIRCIMAGING.112.000153.

    Article  PubMed  Google Scholar 

  17. Hussein AA, Saliba WI, Barakat A, Bassiouny M, Chamsi-Pasha M, Al-Bawardy R, et al. Radiofrequency ablation of persistent atrial fibrillation: diagnosis-to-ablation time, markers of pathways of atrial remodeling, and outcomes. Circ Arrhythm Electrophysiol. 2016;9(1):e003669. doi:10.1161/CIRCEP.115.003669.

    Article  PubMed  Google Scholar 

  18. Mounsey JP, Hummel JP. Reduction of arrhythmia burden and reverse remodeling in patients with persistent atrial fibrillation and severe atrial remodeling: the benefits of hybrid ablation. Pacing Clin Electrophysiol. 2015;. doi:10.1111/pace.12809.

    Google Scholar 

  19. Tsang MY, Barnes ME, Tsang TS. Left atrial volume: clinical value revisited. Curr Cardiol Rep. 2012;14(3):374–80. doi:10.1007/s11886-012-0268-8.

    Article  PubMed  Google Scholar 

  20. Berruezo A, Tamborero D, Mont L, Benito B, Tolosana JM, Sitges M, et al. Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur Heart J. 2007;28(7):836–41. doi:10.1093/eurheartj/ehm027.

    Article  PubMed  Google Scholar 

  21. Abecasis J, Dourado R, Ferreira A, Saraiva C, Cavaco D, Santos KR, et al. Left atrial volume calculated by multi-detector computed tomography may predict successful pulmonary vein isolation in catheter ablation of atrial fibrillation. Europace. 2009;11(10):1289–94. doi:10.1093/europace/eup198.

    Article  PubMed  Google Scholar 

  22. Lester SJ, Ryan EW, Schiller NB, Foster E. Best method in clinical practice and in research studies to determine left atrial size. Am J Cardiol. 1999;84(7):829–32.

    Article  CAS  PubMed  Google Scholar 

  23. Nedios S, Tang M, Roser M, Solowjowa N, Gerds-Li JH, Fleck E, et al. Characteristic changes of volume and three-dimensional structure of the left atrium in different forms of atrial fibrillation: predictive value after ablative treatment. J Interv Card Electrophysiol. 2011;32(2):87–94. doi:10.1007/s10840-011-9591-z.

    Article  PubMed  Google Scholar 

  24. Bisbal F, Guiu E, Calvo N, Marin D, Berruezo A, Arbelo E, et al. Left atrial sphericity: a new method to assess atrial remodeling. Impact on the outcome of atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2013;24(7):752–9. doi:10.1111/jce.12116.

    Article  PubMed  Google Scholar 

  25. Sohns C, Sohns JM, Vollmann D, Luthje L, Bergau L, Dorenkamp M, et al. Left atrial volumetry from routine diagnostic work up prior to pulmonary vein ablation is a good predictor of freedom from atrial fibrillation. Eur Heart J Cardiovasc Imaging. 2013;14(7):684–91. doi:10.1093/ehjci/jet017.

    Article  PubMed  Google Scholar 

  26. Helms AS, West JJ, Patel A, Lipinski MJ, Mangrum JM, Mounsey JP, et al. Relation of left atrial volume from three-dimensional computed tomography to atrial fibrillation recurrence following ablation. Am J Cardiol. 2009;103(7):989–93. doi:10.1016/j.amjcard.2008.12.021.

    Article  PubMed  Google Scholar 

  27. Kiuchi K, Yoshida A, Takei A, Fukuzawa K, Itoh M, Imamura K, et al. Topographic variability of the left atrium and pulmonary veins assessed by 3D-CT predicts the recurrence of atrial fibrillation after catheter ablation. J Arrhythm. 2015;31(5):286–92. doi:10.1016/j.joa.2015.03.006.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15(5):560–6. doi:10.1046/j.1540-8167.2004.03351.x.

    Article  PubMed  Google Scholar 

  29. Ahmed J, Sohal S, Malchano ZJ, Holmvang G, Ruskin JN, Reddy VY. Three-dimensional analysis of pulmonary venous ostial and antral anatomy: implications for balloon catheter-based pulmonary vein isolation. J Cardiovasc Electrophysiol. 2006;17(3):251–5. doi:10.1111/j.1540-8167.2005.00339.x.

    Article  PubMed  Google Scholar 

  30. Kato R, Lickfett L, Meininger G, Dickfeld T, Wu R, Juang G, et al. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation: lessons learned by use of magnetic resonance imaging. Circulation. 2003;107(15):2004–10. doi:10.1161/01.CIR.0000061951.81767.4E.

    Article  PubMed  Google Scholar 

  31. Scharf C, Sneider M, Case I, Chugh A, Lai SW, Pelosi F Jr, et al. Anatomy of the pulmonary veins in patients with atrial fibrillation and effects of segmental ostial ablation analyzed by computed tomography. J Cardiovasc Electrophysiol. 2003;14(2):150–5.

    Article  PubMed  Google Scholar 

  32. Marom EM, Herndon JE, Kim YH, McAdams HP. Variations in pulmonary venous drainage to the left atrium: implications for radiofrequency ablation. Radiology. 2004;230(3):824–9. doi:10.1148/radiol.2303030315.

    Article  PubMed  Google Scholar 

  33. McLellan AJ, Ling LH, Ruggiero D, Wong MC, Walters TE, Nisbet A, et al. Pulmonary vein isolation: the impact of pulmonary venous anatomy on long-term outcome of catheter ablation for paroxysmal atrial fibrillation. Heart Rhythm. 2014;11(4):549–56. doi:10.1016/j.hrthm.2013.12.025.

    Article  PubMed  Google Scholar 

  34. Breinholt JP, Hawkins JA, Minich LA, Tani LY, Orsmond GS, Ritter S, et al. Pulmonary vein stenosis with normal connection: associated cardiac abnormalities and variable outcome. Ann Thorac Surg. 1999;68(1):164–8.

    Article  CAS  PubMed  Google Scholar 

  35. Omasa M, Hasegawa S, Bando T, Okano Y, Otani H, Nakashima Y, et al. A case of congenital pulmonary vein stenosis in an adult. Respiration. 2004;71(1):92–4. doi:10.1159/000075657.

    Article  PubMed  Google Scholar 

  36. Tan CW, Munfakh N, Helmcke F, Abourahma A, Caspi J, Glancy DL. Congenital bilateral pulmonary venous stenosis in an adult: diagnosis by Echo-Doppler. Catheter Cardiovasc Interv. 2000;49(3):328–30.

    Article  CAS  PubMed  Google Scholar 

  37. Ussia G, Marasini M, Zannini L, Pongiglione G. Acquired pulmonary vein obstruction after open-heart surgery. Eur J Cardiothorac Surg. 2002;22(3):465–7.

    Article  PubMed  Google Scholar 

  38. den Bakker MA, Thomeer M, Maat AP. Groeninx van Zoelen CE. Life-threatening hemoptysis caused by chronic idiopathic pulmonary hilar fibrosis with unilateral pulmonary vein occlusion. Ann Diagn Pathol. 2005;9(6):319–22. doi:10.1016/j.anndiagpath.2005.07.006.

    Article  Google Scholar 

  39. Gomes M, Bendaoud S, Wemeau-Stervinou L, Faivre JB, Duhamel A, Wallaert B, et al. Prevalence of venoatrial compression by lymphadenopathy in sarcoidosis. J Thorac Imaging. 2015;30(4):268–73. doi:10.1097/RTI.0000000000000134.

    Article  PubMed  Google Scholar 

  40. Lu HW, Wei P, Jiang S, Gu SY, Fan LC, Liang S, et al. Pulmonary vein stenosis complicating radiofrequency catheter ablation: five case reports and literature review. Medicine (Baltimore). 2015;94(34):e1346. doi:10.1097/MD.0000000000001346.

    Article  Google Scholar 

  41. Purerfellner H. Pulmonary vein stenosis: still the Achilles heel of ablation for atrial fibrillation? Eur Heart J. 2005;26(14):1355–7. doi:10.1093/eurheartj/ehi313.

    Article  PubMed  Google Scholar 

  42. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, et al. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3(1):32–8. doi:10.1161/CIRCEP.109.859116.

    Article  PubMed  Google Scholar 

  43. Burgstahler C, Trabold T, Kuettner A, Kopp AF, Mewis C, Kuehlkamp V, et al. Visualization of pulmonary vein stenosis after radio frequency ablation using multi-slice computed tomography: initial clinical experience in 33 patients. Int J Cardiol. 2005;102(2):287–91. doi:10.1016/j.ijcard.2004.05.034.

    Article  PubMed  Google Scholar 

  44. Barrett CD, Di Biase L, Natale A. How to identify and treat patient with pulmonary vein stenosis post atrial fibrillation ablation. Curr Opin Cardiol. 2009;24(1):42–9.

    Article  PubMed  Google Scholar 

  45. Mugge A, Kuhn H, Nikutta P, Grote J, Lopez JA, Daniel WG. Assessment of left atrial appendage function by biplane transesophageal echocardiography in patients with nonrheumatic atrial fibrillation: identification of a subgroup of patients at increased embolic risk. J Am Coll Cardiol. 1994;23(3):599–607.

    Article  CAS  PubMed  Google Scholar 

  46. Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978;28(10):973–7.

    Article  CAS  PubMed  Google Scholar 

  47. Flegel KM, Shipley MJ, Rose G. Risk of stroke in non-rheumatic atrial fibrillation. Lancet. 1987;1(8532):526–9.

    Article  CAS  PubMed  Google Scholar 

  48. Levy S, Maarek M, Coumel P, Guize L, Lekieffre J, Medvedowsky JL, et al. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study. The College of French Cardiologists. Circulation. 1999;99(23):3028–35.

    Article  CAS  PubMed  Google Scholar 

  49. Manning WJ, Weintraub RM, Waksmonski CA, Haering JM, Rooney PS, Maslow AD, et al. Accuracy of transesophageal echocardiography for identifying left atrial thrombi. A prospective, intraoperative study. Ann Intern Med. 1995;123(11):817–22.

    Article  CAS  PubMed  Google Scholar 

  50. Nishikii-Tachibana M, Murakoshi N, Seo Y, Xu D, Yamamoto M, Ishizu T, et al. Prevalence and clinical determinants of left atrial appendage thrombus in patients with atrial fibrillation before pulmonary vein isolation. Am J Cardiol. 2015;116(9):1368–73. doi:10.1016/j.amjcard.2015.07.055.

    Article  PubMed  Google Scholar 

  51. Hwang JJ, Chen JJ, Lin SC, Tseng YZ, Kuan P, Lien WP, et al. Diagnostic accuracy of transesophageal echocardiography for detecting left atrial thrombi in patients with rheumatic heart disease having undergone mitral valve operations. Am J Cardiol. 1993;72(9):677–81.

    Article  CAS  PubMed  Google Scholar 

  52. Zabalgoitia M, Halperin JL, Pearce LA, Blackshear JL, Asinger RW, Hart RG. Transesophageal echocardiographic correlates of clinical risk of thromboembolism in nonvalvular atrial fibrillation. Stroke Prevention in Atrial Fibrillation III Investigators. J Am Coll Cardiol. 1998;31(7):1622–6.

    Article  CAS  PubMed  Google Scholar 

  53. Hilberath JN, Oakes DA, Shernan SK, Bulwer BE, D’Ambra MN, Eltzschig HK. Safety of transesophageal echocardiography. J Am Soc Echocardiogr. 2010;23(11):1115–27. doi:10.1016/j.echo.2010.08.013 (quiz 220-1).

    Article  PubMed  Google Scholar 

  54. Vincelj J, Sokol I, Jaksic O. Prevalence and clinical significance of left atrial spontaneous echo contrast detected by transesophageal echocardiography. Echocardiography. 2002;19(4):319–24.

    Article  PubMed  Google Scholar 

  55. Romero J, Cao JJ, Garcia MJ, Taub CC. Cardiac imaging for assessment of left atrial appendage stasis and thrombosis. Nat Rev Cardiol. 2014;11(8):470–80. doi:10.1038/nrcardio.2014.77.

    Article  PubMed  Google Scholar 

  56. •• Hur J, Kim YJ, Lee HJ, Nam JE, Hong YJ, Kim HY, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology. 2012;263(3):688–95. doi:10.1148/radiol.12111691. In this article the authors demonstrated that dual-energy cardiac CT is a sensitive and specific modality for detecting left atrial appendage thrombus. In addition, using the dual-energy capabilities of the scanner, it is possible to measure iodine concentration and differentiate between thrombus and circulatory stasis. Therefore, dual-energy cardiac CT might be a clinically useful tool detecting and ruling out intracardiac thrombus with high diagnostic performance.

  57. Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, et al. Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Eur J Echocardiogr. 2011;12(1):26–32. doi:10.1093/ejechocard/jeq095.

    Article  PubMed  Google Scholar 

  58. Tang Q, Cammin J, Srivastava S, Taguchi K. A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT. Med Phys. 2012;39(7):4291–305. doi:10.1118/1.4725754.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ashikaga H, Cammin J, Tang Q, Knudsen K, Inoue Y, Fishman EK, et al. Quantitative assessment of atrial regional function using motion estimation computed tomography. J Comput Assist Tomogr. 2014;38(5):773–8. doi:10.1097/RCT.0000000000000108.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ueda A, McCarthy KP, Sanchez-Quintana D, Ho SY. Right atrial appendage and vestibule: further anatomical insights with implications for invasive electrophysiology. Europace. 2013;15(5):728–34. doi:10.1093/europace/eus382.

    Article  PubMed  Google Scholar 

  61. Platonov PG, Ivanov V, Ho SY, Mitrofanova L. Left atrial posterior wall thickness in patients with and without atrial fibrillation: data from 298 consecutive autopsies. J Cardiovasc Electrophysiol. 2008;19(7):689–92. doi:10.1111/j.1540-8167.2008.01102.x.

    Article  PubMed  Google Scholar 

  62. Wolf CM, Seslar SP, den Boer K, Juraszek AL, McGowan FX, Cowan DB, et al. Atrial remodeling after the Fontan operation. Am J Cardiol. 2009;104(12):1737–42. doi:10.1016/j.amjcard.2009.07.061.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nishida K, Michael G, Dobrev D, Nattel S. Animal models for atrial fibrillation: clinical insights and scientific opportunities. Europace. 2010;12(2):160–72. doi:10.1093/europace/eup328.

    Article  PubMed  Google Scholar 

  64. Whitaker J, Rajani R, Chubb H, Gabrawi M, Varela M, Wright M, et al. The role of myocardial wall thickness in atrial arrhythmogenesis. Europace. 2016. doi:10.1093/europace/euw014.

    PubMed  Google Scholar 

  65. Suenari K, Nakano Y, Hirai Y, Ogi H, Oda N, Makita Y, et al. Left atrial thickness under the catheter ablation lines in patients with paroxysmal atrial fibrillation: insights from 64-slice multidetector computed tomography. Heart Vessels. 2013;28(3):360–8. doi:10.1007/s00380-012-0253-6.

    Article  PubMed  Google Scholar 

  66. Beinart R, Abbara S, Blum A, Ferencik M, Heist K, Ruskin J, et al. Left atrial wall thickness variability measured by CT scans in patients undergoing pulmonary vein isolation. J Cardiovasc Electrophysiol. 2011;22(11):1232–6. doi:10.1111/j.1540-8167.2011.02100.x.

    Article  PubMed  Google Scholar 

  67. Pan NH, Tsao HM, Chang NC, Chen YJ, Chen SA. Aging dilates atrium and pulmonary veins: implications for the genesis of atrial fibrillation. Chest. 2008;133(1):190–6. doi:10.1378/chest.07-1769.

    Article  PubMed  Google Scholar 

  68. Park J, Park CH, Lee HJ, Wi J, Uhm JS, Pak HN, et al. Left atrial wall thickness rather than epicardial fat thickness is related to complex fractionated atrial electrogram. Int J Cardiol. 2014;172(3):e411–3. doi:10.1016/j.ijcard.2013.12.255.

    Article  PubMed  Google Scholar 

  69. Park YM, Park HC, Ban JE, Choi JI, Lim HE, Park SW, et al. Interatrial septal thickness is associated with the extent of left atrial complex fractionated atrial electrograms and acute procedural outcome in patients with persistent atrial fibrillation. Europace. 2015;17(11):1700–7. doi:10.1093/europace/euu403.

    PubMed  Google Scholar 

  70. Wi J, Lee HJ, Uhm JS, Kim JY, Pak HN, Lee M, et al. Complex fractionated atrial electrograms related to left atrial wall thickness. J Cardiovasc Electrophysiol. 2014;25(11):1141–9. doi:10.1111/jce.12473.

    Article  PubMed  Google Scholar 

  71. European Heart Rhythm A, European Association for Cardio-Thoracic S, Camm AJ AJ, Kirchhof P, Lip GY, Schotten U, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J. 2010;31(19):2369–429. doi:10.1093/eurheartj/ehq278.

    Article  Google Scholar 

  72. •• Bishop M, Rajani R, Plank G, Gaddum N, Carr-White G, Wright M, et al. Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation. Europace. 2015. doi:10.1093/europace/euv073. Transmural lesion formation is critical to success in atrial fibrillation ablation and is dependent on left atrial wall thickness. In this article the authors showed that left atrial wall thickness can be measured robustly with cardiac CT using a solution of the Laplace equation over a finite element mesh of the left atrium. The wall thickness measurement might provide important information for guiding radiofrequency ablation procedures.

  73. Montani JP, Carroll JF, Dwyer TM, Antic V, Yang Z, Dulloo AG. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord. 2004;28(Suppl 4):S58–65. doi:10.1038/sj.ijo.0802858.

    Article  CAS  PubMed  Google Scholar 

  74. Hell MM, Achenbach S, Schuhbaeck A, Klinghammer L, May MS, Marwan M. CT-based analysis of pericoronary adipose tissue density: relation to cardiovascular risk factors and epicardial adipose tissue volume. J Cardiovasc Comput Tomogr. 2016;10(1):52–60. doi:10.1016/j.jcct.2015.07.011.

    Article  PubMed  Google Scholar 

  75. Wu FZ, Wu CC, Kuo PL, Wu MT. Differential impacts of cardiac and abdominal ectopic fat deposits on cardiometabolic risk stratification. BMC Cardiovasc Disord. 2016;16(1):20. doi:10.1186/s12872-016-0195-5.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43. doi:10.1038/ncpcardio0319.

    Article  PubMed  Google Scholar 

  77. Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation. Cardiovasc Res. 2014;102(2):205–13. doi:10.1093/cvr/cvu045.

    Article  CAS  PubMed  Google Scholar 

  78. Marwan M, Achenbach S. Quantification of epicardial fat by computed tomography: why, when and how? J Cardiovasc Comput Tomogr. 2013;7(1):3–10. doi:10.1016/j.jcct.2013.01.002.

    Article  PubMed  Google Scholar 

  79. Thanassoulis G, Massaro JM, O’Donnell CJ, Hoffmann U, Levy D, Ellinor PT, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study. Circ Arrhythm Electrophysiol. 2010;3(4):345–50. doi:10.1161/CIRCEP.109.912055.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339(10):659–66. doi:10.1056/NEJM199809033391003.

    Article  CAS  PubMed  Google Scholar 

  81. Liu Q, Chen D, Wang Y, Zhao X, Zheng Y. Cardiac autonomic nerve distribution and arrhythmia. Neural Regen Res. 2012;7(35):2834–41. doi:10.3969/j.issn.1673-5374.2012.35.012.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, et al. Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis. 2008;197(2):896–903. doi:10.1016/j.atherosclerosis.2007.08.016.

    Article  CAS  PubMed  Google Scholar 

  83. Vaziri SM, Larson MG, Benjamin EJ, Levy D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation. 1994;89(2):724–30.

    Article  CAS  PubMed  Google Scholar 

  84. Takemoto Y, Barnes ME, Seward JB, Lester SJ, Appleton CA, Gersh BJ, et al. Usefulness of left atrial volume in predicting first congestive heart failure in patients > or = 65 years of age with well-preserved left ventricular systolic function. Am J Cardiol. 2005;96(6):832–6. doi:10.1016/j.amjcard.2005.05.031.

    Article  PubMed  Google Scholar 

  85. Benjamin EJ, D’Agostino RB, Belanger AJ, Wolf PA, Levy D. Left atrial size and the risk of stroke and death. The Framingham Heart Study. Circulation. 1995;92(4):835–41.

    Article  CAS  PubMed  Google Scholar 

  86. • Hammoudi N, Achkar M, Laveau F, Boubrit L, Djebbar M, Allali Y, et al. Left atrial volume predicts abnormal exercise left ventricular filling pressure. Eur J Heart Fail. 2014;16(10):1089-95. doi:10.1002/ejhf.131. In this manuscript the authors showed that the exercise left ventricular filling pressure is a determinant of left atrial size. Therefore, to predict the abnormal exercise left ventricular filling pressure the measurement of left atrial volume might be a valuable method. It seems that left atrial remodelling is an excellent indicator of decreased left ventricular function, even in preclinical phase.

  87. Lancellotti P, Henri C. The left atrium: an old ‘barometer’ which can reveal great secrets. Eur J Heart Fail. 2014;16(10):1047–8. doi:10.1002/ejhf.155.

    Article  PubMed  Google Scholar 

  88. Reed D, Abbott RD, Smucker ML, Kaul S. Prediction of outcome after mitral valve replacement in patients with symptomatic chronic mitral regurgitation. The importance of left atrial size. Circulation. 1991;84(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  89. Tsang TS, Abhayaratna WP, Barnes ME, Miyasaka Y, Gersh BJ, Bailey KR, et al. Prediction of cardiovascular outcomes with left atrial size: is volume superior to area or diameter? J Am Coll Cardiol. 2006;47(5):1018–23. doi:10.1016/j.jacc.2005.08.077.

    Article  PubMed  Google Scholar 

  90. Tsang TS, Barnes ME, Gersh BJ, Takemoto Y, Rosales AG, Bailey KR, et al. Prediction of risk for first age-related cardiovascular events in an elderly population: the incremental value of echocardiography. J Am Coll Cardiol. 2003;42(7):1199–205.

    Article  PubMed  Google Scholar 

  91. Pritchett AM, Mahoney DW, Jacobsen SJ, Rodeheffer RJ, Karon BL, Redfield MM. Diastolic dysfunction and left atrial volume: a population-based study. J Am Coll Cardiol. 2005;45(1):87–92. doi:10.1016/j.jacc.2004.09.054.

    Article  PubMed  Google Scholar 

  92. Gardin JM, McClelland R, Kitzman D, Lima JA, Bommer W, Klopfenstein HS, et al. M-mode echocardiographic predictors of six- to seven-year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol. 2001;87(9):1051–7.

    Article  CAS  PubMed  Google Scholar 

  93. Truong QA, Bamberg F, Mahabadi AA, Toepker M, Lee H, Rogers IS, et al. Left atrial volume and index by multi-detector computed tomography: comprehensive analysis from predictors of enlargement to predictive value for acute coronary syndrome (ROMICAT study). Int J Cardiol. 2011;146(2):171–6. doi:10.1016/j.ijcard.2009.06.029.

    Article  PubMed  Google Scholar 

  94. Beinart R, Boyko V, Schwammenthal E, Kuperstein R, Sagie A, Hod H, et al. Long-term prognostic significance of left atrial volume in acute myocardial infarction. J Am Coll Cardiol. 2004;44(2):327–34. doi:10.1016/j.jacc.2004.03.062.

    Article  PubMed  Google Scholar 

  95. Antoni ML, ten Brinke EA, Atary JZ, Marsan NA, Holman ER, Schalij MJ, et al. Left atrial strain is related to adverse events in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2011;97(16):1332–7. doi:10.1136/hrt.2011.227678.

    Article  PubMed  Google Scholar 

  96. Mittal R, Seo JH, Vedula V, Choi YJ, Liu H, Huang HHW, et al. Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys. 2016;305:1065–82. doi:10.1016/j.jcp.2015.11.022.

    Article  Google Scholar 

  97. • Vedula V, George R, Younes L, Mittal R. Hemodynamics in the left atrium and its effect on ventricular flow patterns. J Biomech Eng. 2015;137(11):111003. doi:10.1115/1.4031487. In this article the authors assessed the hemodynamics in the left atrium and its impact on the ventricular flow patterns using computational modeling based on 4D CT images. They demonstrated that the morphology and physiology of the left atrium are designed so as to promote mixing and washout, but at the same time generate a highly regularized flow at the mitral annulus. This has clinical implications for pathologies, as well as surgical therapies involving the left atrium.

  98. Pironet A, Dauby PC, Paeme S, Kosta S, Chase JG, Desaive T. Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS One. 2014;8(6):e65146. doi:10.1371/journal.pone.0065146.

    Article  PubMed  Google Scholar 

  99. Kale VP, Limaye LS. Expansion of cord blood CD34 cells in presence of zVADfmk and zLLYfmk improved their in vitro functionality and in vivo engraftment in NOD/SCID mouse. PLoS ONE. 2010;5(8):e12221. doi:10.1371/journal.pone.0012221.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pál Maurovich-Horvat.

Ethics declarations

Conflict of Interest

Júlia Karády, John Whitaker, Ronak Rajani, and Pál Maurovich-Horvat each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on New Imaging Technologies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karády, J., Whitaker, J., Rajani, R. et al. State-of-the-Art CT Imaging of the Left Atrium. Curr Radiol Rep 4, 45 (2016). https://doi.org/10.1007/s40134-016-0171-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-016-0171-y

Keywords

Navigation