Skip to main content

Advertisement

Log in

CT Urography: An Update in Imaging Technique

  • Abdominal CT-An Update on Applications and New Developments (H S Teh, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

For decades, traditional IVU studies have been the mainstay in the investigation of urinary tract calculi and obstruction. However, they have been largely superseded by non-contrast CT in the present day. The use of contrast material further expands the utility of CT in the evaluation of urinary tract disease, allowing detection and characterization of renal masses and urothelial lesions. In this review article, we discuss the development and current role of CT urography as the complete imaging investigation in the genitourinary system. Conventional multiphasic protocols and split-bolus techniques for radiation dose reduction are considered. We then focus on how recent technological advances have allowed dual-energy CT to play a complementary role in CT evaluation of the genitourinary system, allowing stone and renal mass characterization, as well as creation of virtual unenhanced datasets. The use of associated post-processing software applications in the clinical context is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Smith RC, Rosenfield AT, Choe KA, et al. Acute flank pain: comparison of non-contrast-enhanced CT and intravenous urography. Radiology. 1995;194:789–94. doi:10.1148/radiology.194.3.7862980.

    Article  CAS  PubMed  Google Scholar 

  2. Sommer FG, Jeffrey RB, Rubin GD, et al. Detection of ureteral calculi in patients with suspected renal colic: value of reformatted noncontrast helical CT. AJR Am J Roentgenol. 1995;165:509–13. doi:10.2214/ajr.165.3.7645461.

    Article  CAS  PubMed  Google Scholar 

  3. Smith RC, Verga M, McCarthy S, Rosenfield AT. Diagnosis of acute flank pain: value of unenhanced helical CT. AJR Am J Roentgenol. 1996;166:97–101. doi:10.2214/AJR.06.0263.

    Article  CAS  PubMed  Google Scholar 

  4. Katz DS, Lane MJ, Sommer FG. Unenhanced helical CT of ureteral stones: incidence of associated urinary tract findings. AJR Am J Roentgenol. 1996;166:1319–22.

    Article  CAS  PubMed  Google Scholar 

  5. Kim BS, Hwang IK, Choi YW, et al. Low-dose and standard-dose unenhanced helical computed tomography for the assessment of acute renal colic: prospective comparative study. Acta Radiol. 2005;46:756–63. doi:10.1080/02841850500216004.

    Article  PubMed  Google Scholar 

  6. Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188:927–33. doi:10.2214/AJR.06.0793.

    Article  PubMed  Google Scholar 

  7. Ahmed F, Zafar AM, Khan N, Haider Z, Ather MH. A paradigm shift in imaging for renal colic—is it time to say good bye to an old trusted friend? Int J Surg. 2010;8:252–6. doi:10.1016/j.ijsu.2010.02.005.

    Article  PubMed  Google Scholar 

  8. Molen AJ, Cowan NC, Mueller-Lisse UG, Nolte-Ernsting CCA, Takahashi S, Cohan RH. CT urography: definition, indications and techniques. A guideline for clinical practice. Eur Radiol. 2008;18:4–17. doi:10.1007/s00330-007-0792-x.

    Article  Google Scholar 

  9. Cohan RH, Sherman LS, Korobkin M, Bass JC, Francis IR. Renal masses: assessment of corticomedullary-phase and nephrographic-phase CT scans. Radiology. 1995;196:445–51.

    Article  CAS  PubMed  Google Scholar 

  10. Szolar DH, Kammerhuber F, Altziebler S, et al. Multiphasic helical CT of the kidney: increased conspicuity for detection and characterization of small (< 3-cm) renal masses. Radiology. 1997;202:211–7.

    Article  CAS  PubMed  Google Scholar 

  11. Tsili AC, Efremidis SC, Kalef-Ezra J, et al. Multi-detector row CT urography on a 16-row CT scanner in the evaluation of urothelial tumors. Eur Radiol. 2007;17:1046–54. doi:10.1007/s00330-006-0383-2.

    Article  CAS  PubMed  Google Scholar 

  12. • Cowan NC. CT urography for hematuria. Nat Rev Urol. 2012;9:218–26. doi:10.1038/nrurol.2012.32. In this review article, the high diagnostic accuracy of CT urography for urothelial cell carcinoma is highlighted. In patients with hematuria and at high-risk for urothelial cell carcinoma, CT urography is recommended as the initial imaging investigation and as a triage test for cystoscopy. This allows earlier diagnosis and better prognosis.

  13. Graser A, Johnson TRC, Chandarana H, Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19:13–23. doi:10.1007/s00330-008-1122-7.

    Article  PubMed  Google Scholar 

  14. • Takeuchi M, Kawai T, Ito M, et al. Split-bolus CT-urography using dual-energy CT: Feasibility, image quality and dose reduction. Eur J Radiol. 2012;81:3160–5. doi:10.1016/j.ejrad.2012.05.005. This prospective study of 30 patients with either haematuria or diagnosis of urothelial cancer (confirmed or suspected) showed that dual-energy split-bolus CT urography is technically feasible. Quality of dual-energy combined nephrographic-excretory phase images was found to be satisfactory. Omission of true non-enhanced images can reduce total radiation dose by 52 %, but quality of virtual non-enhanced images is not optimal and true non-enhanced images are still required when urine attenuation values need to be measured.

  15. • Karlo CA, Gnannt R, Winklehner A, et al. Split-bolus dual-energy CT urography: Protocol optimization and diagnostic performance for the detection of urinary stones. Abdom Imaging. 2013;38:1136–43. doi:10.1007/s00261-013-9992-9. This prospective study of 100 patients with urinary stones (as seen on true non-enhanced images) showed that split-bolus dual-energy CT urography was technically feasible, with better quality of virtual non-enhanced images (lower image noise and improved iodine subtraction) on 100/140 kVp setting compared to 80/140 kVp setting, both settings utilising tin filtration. On virtual non-enhanced images, 17 % of stones were missed and these missed stones were statistically significantly smaller than stones correctly found. The authors concluded that on virtual non-enhanced images, detection of urinary stones <4 mm was limited.

  16. Kekelidze M, Dwarkasing RS, Dijkshoorn ML, et al. Kidney and urinary tract imaging: triple-bolus multidetector CT urography as a one-stop shop-protocol design, opacification, and image quality analysis. Radiology. 2010;255(2):508–16. doi:10.1148/radiol.09082074.

    Article  PubMed  Google Scholar 

  17. Johnson TRC. Dual-energy CT: general principles. AJR Am J Roentgenol. 2012;199(5 Suppl):S3–8.

    Article  PubMed  Google Scholar 

  18. Vrtiska TJ, Takahashi N, Fletcher JG, Hartman RP, Yu L, Kawashima A. Genitourinary applications of dual-energy CT. AJR Am J Roentgenol. 2010;194(6):1434–42.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Graser A, Johnson TRC, Hecht EM, et al. Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology. 2009;252:433–40. doi:10.1148/radiol.2522080557.

    Article  PubMed  Google Scholar 

  20. Takahashi N, Vrtiska TJ, Kawashima A, et al. Detectability of urinary stones on virtual nonenhanced images generated at pyelographic-phase dual-energy CT. Radiology. 2010;256(1):184–90. doi:10.1148/radiol.10091411.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Toepker M, Kuehas F, Kienzl D, et al. Dual-energy CT with a split bolus: a one-stop shop for patients with suspected urinary stones? J Urol. 2013. doi:10.1016/j.juro.2013.10.057.

    PubMed  Google Scholar 

  22. Mangold S, Thomas C, Fenchel M, et al. Virtual nonenhanced dual-energy CT Urography with tin-filter technology: determinants of detection of urinary calculi in the renal collecting system. Radiology. 2012;264:119–25. doi:10.1148/radiol.12110851.

    Article  PubMed  Google Scholar 

  23. Lundin M, Liden M, Magnuson A, et al. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study. Acta Radiol. 2012;53:689–94. doi:10.1258/ar.2012.110661.

    Article  PubMed  Google Scholar 

  24. • Mileto A, Marin D, Nelson RC, Ascenti G, Boll DT. Dual energy MDCT assessment of renal lesions: An overview. Eur Radiol. 2014;24:353–62. doi:10.1007/s00330-013-3030-8. This review article provides an overview of dual-energy CT applications in the characterisation of renal lesions. Due to the increasing numbers of multidetector CT studies performed, the number of incidental renal lesions has increased, a significant number of which are indeterminate and require further evaluation. Dual-energy CT, as a material-specific spectral imaging investigation, is able to circumvent some of the technical limitations of conventional monoenergetic CT, improving diagnosis of renal lesions and preventing unnecessary further investigations.

  25. Chandarana H, Megibow AJ, Cohen BA, et al. Iodine quantification with dual-energy CT: phantom study and preliminary experience with renal masses. AJR Am J Roentgenol. 2011;196:W693–700. doi:10.2214/AJR.10.5541.

    Article  PubMed  Google Scholar 

  26. Mileto A, Marin D, Ramirez-Giraldo JC, et al. Accuracy of contrast-enhanced dual-energy MDCT for the assessment of iodine uptake in renal lesions. AJR Am J Roentgenol. 2014. doi:10.2214/AJR.13.11450.

    Google Scholar 

  27. Stolzmann P, Scheffel H, Rentsch K, et al. Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res. 2008;36:133–8. doi:10.1007/s00240-008-0140-x.

    Article  PubMed  Google Scholar 

  28. Stolzmann P, Kozomara M, Chuck N, et al. In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging. 2010;35:629–35. doi:10.1007/s00261-009-9569-9.

    Article  PubMed  Google Scholar 

  29. Qu M, Ramirez-Giraldo JC, Leng S, et al. Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. AJR Am J Roentgenol. 2011;196:1279–87. doi:10.2214/AJR.10.5041.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keynes Tze-Anns’ Low.

Additional information

This article is part of the Topical Collection on Abdominal CT-An Update on Applications and New Developments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, K.TA., Teh, H.S. CT Urography: An Update in Imaging Technique. Curr Radiol Rep 3, 31 (2015). https://doi.org/10.1007/s40134-015-0110-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0110-3

Keywords

Navigation