Skip to main content

Advertisement

Log in

MRI of Musculotendinous Injuries—Part I: “Non-strain” Injuries

  • Imaging of Sports Injuries (R Boutin, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Muscle injuries have been consequential since ancient times, but evaluation of such injuries entered a new era with the advent of MRI. The pace of muscle injury research has accelerated in recent years, with new insights on prevention, diagnosis, treatment, and prognosis. This article reviews the current highlights in our understanding of musculotendinous injuries diagnosed by MRI, particularly: (1) direct injuries and their sequelae (e.g., contusion, hematoma, heterotopic ossification, muscle herniation, and chronic exertional compartment syndrome); (2) characteristic manifestations of tensile injuries in children at the apophysis and adults at areas of tendinopathy; and (3) differential diagnostic considerations for abnormal signal intensity seen on MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Kemp B, Stevens A, Gretchen R, Dabbs GR, Zabecki M, Rose JC. Life, death and beyond in Akhenaten’s Egypt: excavating the South Tombs Cemetery at Amarna. Antiquity. 2013;87:64–78.

    Article  Google Scholar 

  2. Nomikos NN. The uses of deep friction massage with olive oil for the prevention and treatment of sports injuries in ancient times: their potential practical implementation. Biomed Int. 2010;1:88–92.

    Google Scholar 

  3. Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level. Br J Sports Med. 2013;47:723–4.

    Article  Google Scholar 

  4. Jackson DW, Feagin JA. Quadriceps contusions in young athletes. Relation of severity of injury to treatment and prognosis. J Bone Joint Surg Am. 1973;55(1):95–105.

    CAS  PubMed  Google Scholar 

  5. Ryan JB, Wheeler JH, Hopkinson WJ, Arciero RA, Kolakowski KR. Quadriceps contusions. West point update. Am J Sports Med. 1991;19(3):299–304.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen SB, Towers JD, Bradley JP. Rotator cuff contusions of the shoulder in professional football players: epidemiology and magnetic resonance imaging findings. Am J Sports Med. 2007;35(3):442–7.

    Article  PubMed  Google Scholar 

  7. Delos D, Leineweber MJ, Chaudhury S, Alzoobaee S, Gao Y, Rodeo SA. The effect of platelet-rich plasma on muscle contusion healing in a rat model. Am J Sports Med. 2014;42(9):2067–74.

    Article  PubMed  Google Scholar 

  8. Terada S, Ota S, Kobayashi M, et al. Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am. 2013;95(11):980–8.

    Article  PubMed  Google Scholar 

  9. Diaz JA, Fischer DA, Rettig AC, Davis TJ, Shelbourne KD. Severe quadriceps muscle contusions in athletes. A report of three cases. Am J Sports Med. 2003;31(2):289–93.

    PubMed  Google Scholar 

  10. Maffulli N, Oliva F, Frizziero A, et al. ISMuLT guidelines for muscle injuries. Muscle Ligaments Tendons J. 2014;3(4):241–9.

    Google Scholar 

  11. Budzik JF, Balbi V, Verclytte S, et al. Diffusion tensor imaging in musculoskeletal disorders. Radiographics: a review publication of the Radiological Society of North America, Inc. 2014;34:E56–72. doi:10.1148/rg.343125062.

  12. Zahneisen B, Ernst T, Poser BA. SENSE and simultaneous multislice imaging. Magn Reson Med. 2014. doi:10.1002/mrm.25519. (Epub ahead of print).

  13. Dave RB, Stevens KJ, Shivaram GM, McAdams TR, Dillingham MF, Beaulieu CF. Ultrasound-guided musculoskeletal interventions in American football: 18 years of experience. AJR Am J Roentgenol. 2014;203(6):W674–83.

    Article  PubMed  Google Scholar 

  14. Drakos M, Birmingham P, Delos D, Barnes R, Murphy C, Weiss L, Warren R. Corticosteroid and anesthetic injections for muscle strains and ligament sprains in the NFL. HSS J. 2014;10(2):136–42.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Szopinski KT, Smigielski R. Safety of sonographically guided aspiration of intramuscular, bursal, articular and subcutaneous hematomas. Eur J Radiol. 2012;81(7):1581–3.

    Article  PubMed  Google Scholar 

  16. Beiner JM, Jokl P. Muscle contusion injury and myositis ossificans traumatica. Clin Orthop Relat Res. 2002;403(suppl):S110–9.

    Article  PubMed  Google Scholar 

  17. Boutin RD. Muscle disorders. In: Resnick D, editor. Diagnosis of bone and joint disorders. 4th ed. Phildadelphia: WB Saunders; 2002. p. 4696–768.

    Google Scholar 

  18. Tippets DM, Zaryanov AV, Burke WV, Patel PD, Suarez JC, Ely EE, Figueroa NM. Incidence of heterotopic ossification in direct anterior total hip arthroplasty: a retrospective radiographic review. J Arthroplast. 2014;29(9):1835–8.

    Article  Google Scholar 

  19. Whelan DB, Dold AP, Trajkovski T, Chahal J. Risk factors for the development of heterotopic ossification after knee dislocation. Clin Orthop Relat Res. 2014;472(9):2698–704.

    Article  PubMed  Google Scholar 

  20. Shukla DR, Pillai G, McAnany S, Hausman M, Parsons BO. Heterotopic ossification formation after fracture-dislocations of the elbow. J Shoulder Elbow Surg. 2015. doi:10.1016/j.jse.2014.11.037. (Epub ahead of print) PubMed PMID: 25601384.

  21. Popovic M, Agarwal A, Zhang L, et al. Radiotherapy for the prophylaxis of heterotopic ossification: a systematic review and meta-analysis of published data. Radiother Oncol. 2014;113(1):10–7.

    Article  PubMed  Google Scholar 

  22. Salazar D, Golz A, Israel H, Marra G. Heterotopic ossification of the elbow treated with surgical resection: risk factors, bony ankylosis, and complications. Clin Orthop Relat Res. 2014;472(7):2269–75.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Veltman ES, Lindenhovius AL, Kloen P. Improvements in elbow motion after resection of heterotopic bone: a systematic review. Strateg Trauma Limb Reconstr. 2014;9(2):65–71.

    Article  Google Scholar 

  24. Kramer DE, Pace JL, Jarrett DY, Zurakowski D, Kocher MS, Micheli LJ. Diagnosis and management of symptomatic muscle herniation of the extremities: a retrospective review. Am J Sports Med. 2013;41(9):2174–80.

    Article  PubMed  Google Scholar 

  25. Finestone AS, Noff M, Nassar Y, Moshe S, Agar G, Tamir E. Management of chronic exertional compartment syndrome and fascial hernias in the anterior lower leg with the forefoot rise test and limited fasciotomy. Foot Ankle Int. 2014;35(3):285–92.

    Article  PubMed  Google Scholar 

  26. Nguyen JT, Nguyen JL, Wheatley MJ, Nguyen TA. Muscle hernias of the leg: a case report and comprehensive review of the literature. Can J Plast Surg. 2013;21(4):243–7.

    PubMed Central  PubMed  Google Scholar 

  27. Kotha KM, Tandra VS, Murthy GV, Vutukuri SR, Vyjayanthi Y. Tibialis anterior partial rupture mimicking muscle hernia: a rare case report. J Clin Diagn Res. 2014;8(10):LD08–9.

    PubMed Central  PubMed  Google Scholar 

  28. Jarrett DY, Kramer DE, Callahan MJ, Kleinman PK. US diagnosis of pediatric muscle hernias of the lower extremities. Pediatr Radiol. 2013;43(Suppl 1):S2–7.

    Article  PubMed  Google Scholar 

  29. • Roscoe D, Roberts AJ, Hulse D. Intramuscular compartment pressure measurement in chronic exertional compartment syndrome: new and improved diagnostic criteria. Am J Sports Med. 2014; (Epub ahead of print) PubMed PMID: 25406302. The most recent analysis of new and improved criteria for the diagnosis of chronic exertional compartment syndrome.

  30. Davis DE, Raikin S, Garras DN, Vitanzo P, Labrador H, Espandar R. Characteristics of patients with chronic exertional compartment syndrome. Foot Ankle Int. 2013;34(10):1349–54.

    Article  PubMed  Google Scholar 

  31. Harrison JW, Thomas P, Aster A, Wilkes G, Hayton MJ. Chronic exertional compartment syndrome of the forearm in elite rowers: a technique for mini-open fasciotomy and a report of six cases. Hand (NY). 2013;8(4):450–3.

    Article  Google Scholar 

  32. Winkes MB, Luiten EJ, van Zoest WJ, Sala HA, Hoogeveen AR, Scheltinga MR. Long-term results of surgical decompression of chronic exertional compartment syndrome of the forearm in motocross racers. Am J Sports Med. 2012;40(2):452–8.

    Article  PubMed  Google Scholar 

  33. Jans C, Peersman G, Peersman B, Van Den Langenbergh T, Valk J, Richart T. Endoscopic decompression for chronic compartment syndrome of the forearm in motocross racers. Knee Surg Sports Traumatol Arthrosc. 2014; (Epub ahead of print) PubMed PMID: 24817163.

  34. Hijjawi J, Nagle DJ. Endoscopic-assisted fascial decompression for forearm exertional compartment syndrome: a case report and review of the literature. Hand (NY). 2010;5(4):427–9.

    Article  Google Scholar 

  35. • Ringler MD, Litwiller DV, Felmlee JP, Shahid KR, Finnoff JT, Carter RE, Amrami KK. MRI accurately detects chronic exertional compartment syndrome: a validation study. Skeletal Radiol. 2013;42(3):385–92. In-scanner exercise-based MRI evaluation for chronic exertional compartment syndrome validated as reliable and reproducible.

  36. Litwiller DV, Amrami KK, Dahm DL, Smith J, Laskowski ER, Stuart MJ, Felmlee JP. Chronic exertional compartment syndrome of the lower extremities: improved screening using a novel dual birdcage coil and in-scanner exercise protocol. Skeletal Radiol. 2007;36(11):1067–75.

    Article  PubMed  Google Scholar 

  37. Burrus MT, Werner BC, Starman JS, Gwathmey FW, Carson EW, Wilder RP, Diduch DR. Chronic leg pain in athletes. Am J Sports Med. 2014; (Epub ahead of print) PubMed PMID: 25157051.

  38. Bhosale P, Ma J, Choi H. Utility of the FIESTA pulse sequence in body oncologic imaging: review. AJR Am J Roentgenol. 2009;192(6 Suppl):S83–93.

    Article  PubMed  Google Scholar 

  39. Diebal AR, Gregory R, Alitz C, et al. Forefoot running improves pain and disability associated with chronic exertional compartment syndrome. Am J Sports Med. 2012;40:1060–7.

    Article  PubMed  Google Scholar 

  40. Isner-Horobeti ME, Dufour SP, Blaes C, Lecocq J. Intramuscular pressure before and after botulinum toxin in chronic exertional compartment syndrome of the leg: a preliminary study. Am J Sports Med. 2013;41(11):2558–66.

    Article  PubMed  Google Scholar 

  41. Winkes MB, Hoogeveen AR, Scheltinga MR. Is surgery effective for deep posterior compartment syndrome of the leg? A systematic review. Br J Sports Med. 2014;48(22):1592–8.

    Article  PubMed  Google Scholar 

  42. Sigmund EE, Sui D, Ukpebor O, Baete S, Fieremans E, Babb JS, Mechlin M, Liu K, Kwon J, McGorty K, Hodnett PA, Bencardino J. Stimulated echo diffusion tensor imaging and SPAIR T2-weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imag. 2013;38(5):1073–82.

    Article  Google Scholar 

  43. Sigmund EE, Novikov DS, Sui D, et al. Time-dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed. 2014;27(5):519–28.

    Article  PubMed Central  PubMed  Google Scholar 

  44. National Council of Youths Sports. National Council of Youths Sports Report on Trends and Participation in Organized Youth Sports 2008 Edition. 2008. http://www.ncys.org/pdfs/2008/2008-ncys-market-research-report.pdf. Accessed 18 Jan 2015.

  45. Stracciolini A, Casciano R, Friedman HL, Stein CJ, Meehan WP 3rd, Micheli LJ. Pediatric sports injuries: a comparison of males versus females. Am J Sports Med. 2014;42(4):965–72.

    Article  PubMed  Google Scholar 

  46. Stracciolini A, Casciano R, Friedman HL, Meehan WP 3rd, Micheli LJ. A closer look at overuse injuries in the pediatric athlete. Clin J Sport Med. 2015;25(1):30–5.

    Article  PubMed  Google Scholar 

  47. Vandervliet EJ, Vanhoenacker FM, Snoeckx A, Gielen JL, Van Dyck P, Parizel PM. Sports-related acute and chronic avulsion injuries in children and adolescents with special emphasis on tennis. Br J Sports Med. 2007;41(11):827–31.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rossi F, Dragoni S. Acute avulsion fractures of the pelvis in adolescent competitive athletes: prevalence, location and sports distribution of 203 cases collected. Skeletal Radiol. 2001;30(3):127–31.

    Article  CAS  PubMed  Google Scholar 

  49. Gidwani S, Bircher MD. Avulsion injuries of the hamstring origin—a series of 12 patients and management algorithm. Ann R Coll Surg Engl. 2007;89(4):394–9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Meyers AB, Laor T, Zbojniewicz AM, Anton CG. MRI of radiographically occult ischial apophyseal avulsions. Pediatr Radiol. 2012;42(11):1357–63.

    Article  PubMed  Google Scholar 

  51. Hébert KJ, Laor T, Divine JG, Emery KH, Wall EJ. MRI appearance of chronic stress injury of the iliac crest apophysis in adolescent athletes. AJR Am J Roentgenol. 2008;190(6):1487–91.

    Article  PubMed  Google Scholar 

  52. Jaimes C, Jimenez M, Shabshin N, Laor T, Jaramillo D. Taking the stress out of evaluating stress injuries in children. Radiographics. 2012;32(2):537–55.

    Article  PubMed  Google Scholar 

  53. Singer G, Eberl R, Wegmann H, Marterer R, Kraus T, Sorantin E. Diagnosis and treatment of apophyseal injuries of the pelvis in adolescents. Semin Musculoskelet Radiol. 2014;18(5):498–504.

    Article  PubMed  Google Scholar 

  54. Biedert RM. Surgical management of traumatic avulsion of the ischial tuberosity in young athletes. Clin J Sport Med. 2015;25(1):67–72.

    Article  PubMed  Google Scholar 

  55. Li X, Xu S, Lin X, Wang Q, Pan J. Results of operative treatment of avulsion fractures of the iliac crest apophysis in adolescents. Injury. 2014;45(4):721–4.

    Article  PubMed  Google Scholar 

  56. • Blankenbaker DG, Tuite MJ. Non-femoroacetabular impingement. Semin Musculoskelet Radiol. 2013;17(3):279–85. Expert review on “non-femoroacetabular” causes of impingement in the hip region: ischiofemoral, subspine, and iliopsoas impingement.

  57. Hapa O, Bedi A, Gursan O, Akar MS, Güvencer M, Havitçioğlu H, Larson CM. Anatomic footprint of the direct head of the rectus femoris origin: cadaveric study and clinical series of hips after arthroscopic anterior inferior iliac spine/subspine decompression. Arthroscopy. 2013;29(12):1932–40.

    Article  PubMed  Google Scholar 

  58. de Sa D, Alradwan H, Cargnelli S, et al. Extra-articular hip impingement: a systematic review examining operative treatment of psoas, subspine, ischiofemoral, and greater trochanteric/pelvic impingement. Arthroscopy. 2014;30(8):1026–41.

    Article  PubMed  Google Scholar 

  59. Cloke D, Moore O, Shah T, Rushton S, Shirley MD, Deehan DJ. Thigh muscle injuries in youth soccer: predictors of recovery. Am J Sports Med. 2012;40(2):433–9.

    Article  PubMed  Google Scholar 

  60. Lee D, Stinner D, Mir H. Quadriceps and patellar tendon ruptures. J Knee Surg. 2013;26(5):301–8.

    Article  PubMed  Google Scholar 

  61. Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73(10):1507–25.

    CAS  PubMed  Google Scholar 

  62. Millar NL, Hueber AJ, Reilly JH, Xu Y, Fazzi UG, Murrell GA, McInnes IB. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38(10):2085–91.

    Article  PubMed  Google Scholar 

  63. Kragsnaes MS, Fredberg U, Stribolt K, Kjaer SG, Bendix K, Ellingsen T. Stereological quantification of immune-competent cells in baseline biopsy specimens from achilles tendons: results from patients with chronic tendinopathy followed for more than 4 years. Am J Sports Med. 2014;42(10):2435–45.

    Article  PubMed  Google Scholar 

  64. Boutin RD, Fritz RC, Steinbach LS. Imaging of sports-related muscle injuries. Radiol Clin North Am. 2002;40(2):333–62.

    Article  PubMed  Google Scholar 

  65. Boutin RD, Pathria MN. Magnetic resonance imaging of muscle. In: Hodler J, et al., editors. Musculoskeletal diseases 2013-2016. Milan: Springer Italia; 2013. p. 161–70.

    Chapter  Google Scholar 

  66. May DA, Disler DG, Jones EA, Balkissoon AA, Manaster BJ. Abnormal signal intensity in skeletal muscle at MR imaging: patterns, pearls, and pitfalls. Radiographics. 2000;20:S295–315.

    Article  PubMed  Google Scholar 

  67. Hansford BG, Stacy GS. From tumor to trauma: etiologically deconstructing a unique differential diagnosis of musculoskeletal entities with high signal intensity on t1-weighted MRI. AJR Am J Roentgenol. 2015;204(4):817–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Downey Boutin.

Additional information

This article (“Part I”) provides an overview of musculotendinous injuries that are amenable to imaging, with a focus on “non-strain” injuries. In the accompanying companion article (“Part II”, doi: 10.1007/s40134-015-0109-9), we provide an in-depth update of musculotendinous strain injuries.

This article is part of the Topical Collection on Imaging of Sports Injuries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutin, R.D., Fritz, R.C. MRI of Musculotendinous Injuries—Part I: “Non-strain” Injuries. Curr Radiol Rep 3, 30 (2015). https://doi.org/10.1007/s40134-015-0108-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0108-x

Keywords

Navigation