Skip to main content
Log in

Empirical Model for the Prediction of Ground Motion Duration on Soft Soils

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

In the civil engineering field, several attenuation relationships are proposed to estimate the ground motion duration (GMD) of earthquakes for hard and medium soil types, considering various seismic quantities. However, there is a lack of prediction equations that are directly used for soft soil sites. It is a known fact that soft soil has very adverse impacts on the seismic behavior of structures due to the amplification of displacement demands, and hence, GMD is also affected by this situation. Considering the importance of the topic, special attention is paid to the prediction of GMD of earthquakes at soft soil sites. In the study, two important topics are emphasized. First, a technique explicitly evolved to quantify the significant earthquake GMD based on the estimated time interval between 5 and 95% of the Arias intensity is presented. Second, a prediction equation for significant GMD is proposed for soft soils by using several earthquake database collections. The collected database is statistically evaluated for different earthquake parameters such as moment magnitude (Mw), closest distance to the rupture (Rrup) and average shear wave velocity for the top 30 m of soil (Vs,30), and a prediction equation is suggested using several regression coefficients based on these parameters. Consequently, the proposed prediction equation is compared with the existing models used in the literature, and the efficiency of the model is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hancock J, Bommer JJ (2006) A state-of-knowledge review of the influence of strong-motion duration on structural damage. Earthq Spectra 22(3):827–845

    Article  Google Scholar 

  2. Du W, Yu X, Ning CL (2020) Influence of earthquake duration on structural collapse assessment using hazard-consistent ground motions for shallow crustal earthquakes. Bull Earthq Eng 18(7):3005–3023

    Article  Google Scholar 

  3. Xu B, Wang X, Pang R, Zhou Y (2018) Influence of strong motion duration on the seismic performance of high CFRDs based on elastoplastic analysis. Soil Dyn Earthq Eng 114(July):438–447

    Article  Google Scholar 

  4. Bommer J, Martinez-Pereira A (2000) Strong-motion parameters: definition, usefulness and predictability. In: 12th World Conference on Earthquake. pp 1–8

  5. Bolt BA (1973) Duration of strong ground motion. In: 5th World Conf. Earthq. Eng., vol. 1. Rome. pp 1304–1313

  6. Bommer JJ, Stafford PJ, Alarcón JE (2009) Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seismol Soc Am 99(6):3217–3233

    Article  Google Scholar 

  7. Lee J, Green RA (2012) An empirical bracketed duration relation for stable continental regions of North America. Earthq Struct 3(1):1–15

    Article  MathSciNet  Google Scholar 

  8. Anbazhagan P, Neaz SM, Bajaj K, Mariya Dayana PJ, Madhura H, Reddy GR (2017) Empirical models for the prediction of ground motion duration for intraplate earthquakes. J Seismolog 21(4):1001–1021

    Article  Google Scholar 

  9. Rezaee MM, Saffari H (2020) Empirical equations for the prediction of the bracketed and uniform duration of earthquake ground motion using the iran database. Soil Dyn Earthq Eng 137(July):106306

    Article  Google Scholar 

  10. Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bull Seismol Soc Am 65(3):581–626

    Google Scholar 

  11. Lee J (2014) Directionality of strong ground motion durations. NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake Engineering

  12. Bahrampouri M, Rodriguez-Marek A, Green RA (2021) Ground motion prediction equations for significant duration using the KiK-net database. Earthq Spectra 37(2):903–920

    Article  Google Scholar 

  13. Bhargav NC, Challagulla SP, Farsangi EN (2022) prediction model for significant duration of strong motion in India. J Appl Sci Eng 26(2):279–292

    Google Scholar 

  14. Baizid B, Cardone D (2021) Estimation of stochastic damping reduction factor using Monte Carlo simulation and artificial neural network method. Ingegneria Sismica 38(4):37–53

    Google Scholar 

  15. Hancock J, Bommer JJ (2007) Using spectral matched records to explore the influence of strong-motion duration on inelastic structural response. Soil Dyn Earthq Eng 27(4):291–299

    Article  Google Scholar 

  16. Bojorquez E, Iervolino I, Manfredi G, Cosenza E (2006) Influence of Ground Motion Duration on Degrading SDOF Systems. 1st European Conference on Earthquake Engineering and Seismology. (September):3–8

  17. Afshari K, Stewart JP (2016) Physically parameterized prediction equations for significant duration in active crustal regions. Earthq Spectra 32(4):2057–2081

    Article  Google Scholar 

  18. Bravo-Haro MA, Elghazouli AY (2018) Influence of earthquake duration on the response of steel moment frames. Soil Dyn Earthq Eng 115(July):634–651

    Article  Google Scholar 

  19. Tombari A, El Naggar MH, Dezi F (2017) Impact of ground motion duration and soil non-linearity on the seismic performance of single piles. Soil Dyn Earthq Eng. 100:72–87

    Article  Google Scholar 

  20. Chaudhary B, Hazarika H, Nishimura K (2017) Effects of duration and acceleration level of earthquake ground motion on the behavior of unreinforced and reinforced breakwater foundation. Soil Dyn Earthq Eng. 98:24–37

    Article  Google Scholar 

  21. Tian P, Sun X, Li X, Wan K (2019) Stochastic simulation of ground motions based on NGA-West2 strong motion records. Earthq Sci 32(3–4):115–124

    Article  Google Scholar 

  22. Idriss IM (1991) Earthquake ground motions at soft soil sites. In: Proc 2nd Int Conf Recent Adv Geotech Earthq Eng Soil Dyn. St. Louis. pp 2265–2273.

  23. Douglas J, Gehl P, Bonilla LF, Scotti O, Régnier J, Duval AM, Bertrand E (2009) Making the most of available site information for empirical ground-motion prediction. Bull Seismol Soc Am 99(3):1502–1520

    Article  Google Scholar 

  24. Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BS-JSJ, Wooddell KE, Graves RW, Kottke AR, Boore DM, Kishida T, Donahue JL (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005

    Article  Google Scholar 

  25. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  26. Campbell KW (1997) Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra. Seismol Res Lett 68(1):154–179

    Article  MathSciNet  Google Scholar 

  27. Douglas J (2003) Earthquake ground motion estimation using strong-motion records: a review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci Rev 61(1–2):43–104

    Article  Google Scholar 

  28. Gupta ID (2006) Defining source-to-site distances for evaluation of design earthquake ground motion. In: Proceedings of the 13th Symposium on Earthquake Engineering. (December 2006):295–306

  29. Novikova EI, Trifunac MD (1994) Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site conditions and site geometry. Earthq Eng Struct Dynam 23(9):1023–1043

    Article  Google Scholar 

  30. PEER. Pacific Earthquake Engineering Research <http://Peer.Berkeley.Edu/Peer_ground_motion_ Database/>

  31. Council IC, and International Code Council. (2006) International Building Code. ICC

  32. BSSC (2001) 2000 NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. FEMA-368 Part 1 (Provisions): Developed for the Federal Emergency Management Agency, Washington, DC

  33. EC 8 (2004) Eurocode 8: design of structures for earthquake resistance part 1: general rules, seismic actions and rules for buildings. European Norm. European Committee for Standardization

  34. UBC (1997) Uniform Building Code. California, USA: International Conference of Building Officials

  35. RPA99 (2003) Algerian earthquake resistant regulations. Algiers: National center of applied research in earthquake engineering

  36. TBEC (2018) Turkish building earthquake code. Ankara, Turkey: Ministry of Interior Disaster and Emergency Management Presidency

  37. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst. https://doi.org/10.1029/2001GC000252

    Article  Google Scholar 

  38. Arias A (1970) A measure of earthquake intensity. In: Hansen (Ed) Seism Des Nucl Power Plants. Cambridge. pp 438–483

  39. Esteva L, Rosenblueth E (1964) Espectros de Temblores a Distancias Moderadas y Grandes. Boletin Sociedad Mexicana de Ingenieria Sesmica 2(1):1–18

    Google Scholar 

  40. Bruno H., and Fabrice C. 2000. Empirical Determination of the Ground Shaking Duration Due to an Earthquake Using Strong Motion Accelerograms for Engineering Applications. In:. 12th World Conf. Earthq. Eng. Auckland, New Zeland:; 1–7.

  41. Reinoso E, Ordaz M (2001) Duration of strong ground motion during mexican earthquakes in terms of magnitude, distance to the rupture area and dominant site period. Earthquake Eng Struct Dynam 30(5):653–673

    Article  Google Scholar 

  42. Snaebjörnsson J.T., and Sigbjornsson R. 2008. The Duration Characteristics of Earthquake Ground Motions. In:. 14th World Conf. Earthq. Eng. Beijing, China:; 12–17.

  43. Fukuwa N, Hirai T, Tobita J, Kurata K (2016) Dynamic Response of Tall Buildings on Sedimentary Basin to Long-Period Seismic Ground Motion. J Disaster Res 11(5):857–869

    Article  Google Scholar 

Download references

Acknowledgements

Current research is supported by the directorate general for scientific research and technological development (DGRSDT) at the Ministry of high education and scientific research of Algeria.

Funding

No funding was provided for completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baizid Benahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table of earthquakes events used in this study.

Event

Event date

Latitude

Longitude

Magnitude

Number of EQ

Interplate tectonic region

1

Humbolt Bay

07/02/1937

40,40

− 125,10

5,8

1

2

Imperial Valley-01

06/06/1938

32,90

− 115,22

5

1

3

Northwest Calif-01

12/09/1938

40,30

− 124,80

5,5

1

4

Northwest Calif-02

09/02/1941

40,70

− 125,40

6,6

1

5

Borrego

21/10/1942

33,05

− 116,09

6,5

1

6

Imperial Valley-03

24/01/1951

33,03

− 115,65

5,6

1

7

Northwest Calif-03

08/10/1951

40,28

− 124,80

5,8

1

8

Kern County

21/07/1952

34,99

− 119,02

7,36

1

9

Northern Calif-02

22/09/1952

40,20

− 124,42

5,2

1

10

Imperial Valley-04

14/06/1953

32,78

− 115,72

5,5

1

11

Imperial Valley-05

17/12/1955

32,92

− 115,59

5,4

1

12

Central Calif-02

20/01/1960

36,78

− 121,43

5

1

13

Northern Calif-04

06/06/1960

40,82

− 124,88

5,7

1

14

Hollister-02

09/04/1961

36,70

− 121,30

5,5

1

15

Northern Calif-05

10/12/1967

40,50

− 124,60

5,6

1

16

Northern Calif-06

18/12/1967

37,01

− 121,79

5,2

1

17

Borrego Mtn

09/04/1968

33,19

− 116,14

6,63

3

18

Lytle Creek

12/09/1970

34,27

− 117,54

5,33

2

19

San Fernando

09/02/1971

34,44

− 118,41

6,61

17

20

Anza (Horse Canyon)-01

25/02/1980

33,51

− 116,51

5,19

2

21

Taiwan SMART1(5)

29/01/1981

24,43

121,90

5,9

7

22

Westmorland

26/04/1981

33,10

− 115,62

5,9

5

23

Coalinga-03

11/06/1983

36,26

− 120,45

5,38

2

24

Coalinga-04

09/07/1983

36,25

− 120,40

5,18

2

25

Coalinga-05

22/07/1983

36,24

− 120,41

5,77

4

26

Coalinga-06

22/07/1983

36,22

− 120,41

4,89

1

27

Taiwan SMART1(25)

21/09/1983

23,94

122,32

6,5

34

28

Taiwan SMART1(33)

12/06/1985

24,57

122,20

5,8

31

29

Taiwan SMART1(45)

14/11/1986

23,99

121,83

7,3

35

30

Whittier Narrows-01

01/10/1987

34,05

− 118,08

5,99

72

31

Joshua Tree, CA

23/04/1992

33,96

− 116,32

6,1

1

32

Big Bear-01

28/06/1992

34,21

− 116,83

6,46

19

33

Landers

28/06/1992

34,20

− 116,44

7,28

45

34

Northridge-01

17/01/1994

34,21

− 118,55

6,69

83

35

Northridge-02

17/01/1994

34,28

− 118,49

6,05

12

36

Northridge-03

17/01/1994

34,34

− 118,61

5,2

4

37

Northridge-04

17/01/1994

34,33

− 118,70

5,93

4

38

Northridge-05

18/01/1994

34,38

− 118,70

5,13

3

39

San Juan Bautista

12/08/1998

36,75

− 121,46

5,17

2

40

Chi-Chi, Taiwan

20/09/1999

23,85

120,82

7,62

100

41

Chi-Chi, Taiwan-02

20/09/1999

23,94

121,01

5,9

7

42

Chi-Chi, Taiwan-03

20/09/1999

23,81

120,85

6,2

69

43

Chi-Chi, Taiwan-04

20/09/1999

23,60

120,82

6,2

28

44

9,154,141

14/06/2000

32,89

− 115,50

4,51

8

45

Big Bear-02

10/02/2001

34,29

− 116,95

4,53

22

46

Anza-02

31/10/2001

33,51

− 116,51

4,92

76

47

Gulf of California

08/12/2001

32,04

− 114,91

5,7

12

48

CA/Baja Border Area

22/02/2002

32,32

− 115,32

5,31

10

49

Gilroy

14/05/2002

36,97

− 121,60

4,9

21

50

Big Bear City

22/02/2003

34,31

− 116,85

4,92

24

51

Parkfield-02, CA

28/09/2004

35,82

− 120,37

6

48

52

21,401,069

29/09/2004

35,96

− 120,50

5

2

53

21,401,170

30/09/2004

35,99

− 120,54

4,88

2

54

14,138,080

16/04/2005

35,00

− 119,19

4,59

48

55

14,151,344

12/06/2005

33,53

− 116,57

5,2

45

56

14,312,160

09/08/2007

34,30

− 118,63

4,66

83

57

10,275,733

02/09/2007

33,73

− 117,49

4,73

82

58

14,383,980

29/07/2008

33,95

− 117,77

5,39

73

59

10,410,337

18/05/2009

33,93

− 118,35

4,7

98

60

El Mayor-Cucapah

04/04/2010

32,30

− 115,27

7,2

95

61

Darfield, New Zealand

03/09/2010

− 43,62

172,05

7

44

Intraplate tectonic region

62

Northern Calif-01

03/10/1941

40,40

− 124,80

6,4

1

63

Central Calif-01

25/04/1954

36,93

− 121,68

5,3

1

64

Hollister-01

09/04/1961

36,68

− 121,30

5,6

1

65

Hollister-03

28/11/1974

36,92

− 121,47

5,14

2

66

St Elias, Alaska

01/06/1979

59,54

− 139,73

7,54

2

67

Trinidad offshore

24/08/1983

40,37

− 124,92

5,7

2

68

New Zealand-01

05/03/1984

− 38,92

175,78

5,5

1

69

N, Palm Springs

08/07/1986

34,00

− 116,61

6,06

12

70

Sicilia-Orientale, Italy

13/12/1990

37,33

15,28

5,6

1

71

Erzican, Turkey

13/03/1992

39,71

39,59

6,69

1

72

Gulf of Aqaba

22/11/1995

28,76

34,66

7,2

2

73

9,064,093

16/08/1998

34,12

− 116,92

4,78

10

74

Kocaeli, Turkey

17/08/1999

40,75

29,99

7,51

15

Midplate tectonic region

75

Northern Calif-03

21/12/1954

40,82

− 124,08

6,5

1

76

Ancona-09, Italy

14/06/1972

43,65

13,61

4,7

1

77

Managua, Nicaragua-01

23/12/1972

12,15

− 86,27

6,24

1

78

Managua, Nicaragua-02

23/12/1972

12,15

− 86,27

5,2

1

79

Northern Calif-07

07/06/1975

40,57

− 124,14

5,2

1

80

Oroville-03

08/08/1975

39,50

− 121,51

4,7

1

81

Friuli, Italy-01

06/05/1976

46,35

13,24

6,5

3

82

Friuli (aftershock 4), Italy

09/06/1976

46,26

13,01

4,5

1

83

Friuli (aftershock 5), Italy

11/06/1976

46,23

13,00

4,7

1

84

Friuli (aftershock 9), Italy

11/09/1976

46,28

13,18

5,5

1

85

Fruili, Italy-03

11/09/1976

46,30

13,23

5,5

1

86

Friuli (aftershock 10), Italy

13/09/1976

46,31

13,15

4,8

1

87

Friuli, Italy-02

15/09/1976

46,38

13,07

5,91

2

88

Tabas, Iran

16/09/1978

33,22

57,32

7,35

4

89

Montenegro, Yugo,

15/04/1979

42,04

19,21

7,1

2

90

Coyote Lake

06/08/1979

37,07

− 121,49

5,74

5

91

Livermore-01

24/01/1980

37,86

− 121,82

5,8

1

92

Mammoth Lakes-01

25/05/1980

37,61

− 118,85

6,06

1

93

Mammoth Lakes-07

27/05/1980

37,60

− 118,79

4,73

3

94

Mammoth Lakes-08

31/05/1980

37,60

− 118,79

4,8

2

95

Mammoth Lakes-09

11/06/1980

37,55

− 118,88

4,85

3

96

Trinidad

08/11/1980

41,07

− 124,61

7,2

3

97

Irpinia, Italy-02

23/11/1980

40,85

15,33

6,2

1

98

Lazio-Abruzzo, Italy

07/05/1984

41,71

13,90

5,8

3

99

Drama, Greece

09/11/1985

41,23

24,00

5,2

1

100

Mt, Lewis

31/03/1986

37,48

− 121,69

5,6

1

101

Chalfant Valley-01

20/07/1986

37,58

− 118,45

5,77

2

102

Manjil, Iran

20/06/1990

36,84

49,39

7,37

5

103

Cape Mendocino

25/04/1992

40,33

− 124,23

7,01

2

104

Kozani, Greece-01

13/05/1995

40,16

21,68

6,4

2

105

Dinar, Turkey

01/10/1995

38,06

30,15

6,4

1

106

Northwest China-01

05/04/1997

39,54

76,88

5,9

2

107

Northwest China-02

06/04/1997

39,54

77,00

5,93

2

108

Northwest China-03

11/04/1997

39,56

76,95

6,1

1

109

Northwest China-04

15/04/1997

39,62

76,98

5,8

2

110

Umbria Marche (foreshock), Italy

26/09/1997

43,02

12,89

5,7

5

111

Umbria Marche, Italy

26/09/1997

43,03

12,86

6

6

112

Umbria Marche (aftershock 1), Italy

06/10/1997

43,02

12,84

5,5

5

113

Umbria Marche (aftershock 2), Italy

14/10/1997

42,92

12,93

5,6

3

114

Umbria Marche (aftershock 13), Italy

09/11/1997

42,85

13,00

4,9

1

115

9,069,997

27/10/1998

32,84

− 117,25

4,5

12

116

Kipawa

01/01/2000

46,84

− 78,92

4,62

1

117

Yountville

03/09/2000

38,38

− 122,41

5

16

118

Tottori, Japan

06/10/2000

35,28

133,35

6,61

84

119

Mohawk Val, Portola

10/08/2001

39,81

− 120,62

5,17

4

120

Molise-01, Italy

11/01/2002

41,74

14,84

5,7

1

121

Au Sable Forks

20/04/2002

44,43

73,63

4,99

5

122

Caborn

18/06/2002

37,99

87,79

4,55

12

123

Molise-02, Italy

31/10/2002

41,72

14,89

5,7

1

124

Denali, Alaska

03/11/2002

63,54

− 147,44

7,9

16

125

Fort Payne

29/04/2003

34,49

− 85,63

4,62

11

126

Bam, Iran

26/12/2003

28,98

58,36

6,6

12

127

Niigata, Japan

23/10/2004

37,31

138,84

6,63

94

128

Riviere Du Loup

06/03/2005

47,75

69,73

4,65

2

129

21,465,580

26/06/2005

39,31

− 120,06

4,77

19

130

21,530,368

03/08/2006

38,37

− 122,59

4,5

6

131

51,182,810

12/06/2007

37,53

− 118,86

4,6

2

132

Mount Carmel (Aftershocks)

18/04/2008

38,45

87,89

5,3

9

133

Mount Carmel

18/04/2008

38,45

87,89

4,64

22

134

L'Aquila (aftershock 1), Italy

07/04/2009

42,28

13,46

5,6

7

135

L'Aquila (aftershock 2), Italy

09/04/2009

42,48

13,34

5,4

6

136

14,462,064

23/05/2009

36,40

− 117,84

4,73

2

137

14,517,500

01/10/2009

36,39

− 117,86

5

10

138

14,519,756

03/10/2009

36,39

− 117,86

4,71

3

139

14,519,764

03/10/2009

36,39

− 117,87

4,5

1

140

14,519,780

03/10/2009

36,40

− 117,85

5,19

26

141

Val Des Bois

23/06/2010

45,88

75,48

5,1

11

142

Green Brier

28/02/2011

35,27

− 92,36

4,68

60

143

Comal County

20/10/2011

28,86

98,07

4,71

7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouari, I., Benahmed, B., Palanci, M. et al. Empirical Model for the Prediction of Ground Motion Duration on Soft Soils. Indian Geotech J 54, 421–440 (2024). https://doi.org/10.1007/s40098-023-00778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-023-00778-5

Keywords

Navigation