Skip to main content
Log in

Meso-mechanism Research on Mechanical Properties of Rock-like with Two Fissures in Brazilian Test

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

The tensile strength is one of most significant parameters for rock, while few studies have been reported on the rupture mechanism regarding Brazilian test in rocks containing two fissures. In this work, the rock-like materials were adopted to prefabricate Brazilian disc specimens containing two prefabricated fissures. Based on the X-ray computed tomography technology and Particle Flow Code in 2 Dimension, the influences of different fissure dip angles on strength, deformation, fracture and other mechanical properties in Brazilian test are investigated. The research shows: When the dip angle of the upper fissure is 0°, with the dip angle of the lower fissure grows from 0° to 90°, the tensile strength decreases rapidly and then fluctuates slightly, while the elastic modulus is not affected; when the dip angles of the two fissures are comparable, as the angle between the two fissures gradually increases, the tensile strength decreases first and then increases, and the elastic modulus shows a monotonic growth, but the strain corresponding to the peak stress gradually decreases. In terms of the rupture mechanism, few shear cracks are developed from the fissure tip, while the micro-cracking activity is dominated by tensile failures inclined to the loading direction, which further penetrate across the bulk specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. https://doi.org/10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  2. ISRM (1978) Suggested methods for determining tensile strength of rock materials. J Rock Mech Min Sci Geomech Abstr 15(2):99–103. https://doi.org/10.1016/0148-9062(78)90003-7

    Article  Google Scholar 

  3. Markides CF, Pazis D, Kourkoulis S (2010) Closed full-field solutions for stresses and displacements in the Brazilian disk under distributed radial load. Int J Rock Mech Min Sci 47(2):227–237. https://doi.org/10.1016/j.ijrmms.2009.11.006

    Article  Google Scholar 

  4. Erarslan N, Liang ZZ, Williams DJ (2012) Experimental and numerical studies on determination of indirect tensile strength of rocks. Rock Mech Rock Eng 45(5):739–751. https://doi.org/10.1007/s00603-011-0205-y

    Article  Google Scholar 

  5. Erarslan N, Williams DJ (2011) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci 49(3):21–30. https://doi.org/10.1016/j.ijrmms.2011.11.007

    Article  Google Scholar 

  6. Yu Y, Xu YL (2006) Method to determine tensile strength of rock using flattened Brazilian disc. Chin J Rock Mech Eng 25(7):1457–1462. https://doi.org/10.3321/j.issn:1000-6915.2006.07.024

    Article  Google Scholar 

  7. Li M, Liu XS, Pan YH, Qiao SH, Hou ZL, Hao ZY (2022) Experimental studies on the effect of cyclic thermal shock and cooling methods on the mechanical properties and fracture behavior of prefabricated fissured sandstone. Theor Appl Fract Mech 122:103576. https://doi.org/10.1016/j.tafmec.2022.103576

    Article  Google Scholar 

  8. Liu ZL, Ma CD, Wei XA, Xie WB (2021) Experimental study on mechanical properties and failure modes of pre-existing cracks in sandstone during uniaxial tension/compression testing. Eng Fract Mech 255:107966. https://doi.org/10.1016/j.engfracmech.2021.107966

    Article  Google Scholar 

  9. Li ZH, Tian H, Niu Y, Wang EY, Zhang X, He S, Wang FZ, Zheng AQ (2022) Study on the acoustic and thermal response characteristics of coal samples with various prefabricated crack angles during loaded failure under uniaxial compression. J Appl Geophys 200:104618. https://doi.org/10.1016/j.jappgeo.2022.104618

    Article  Google Scholar 

  10. Fan X, Yu H, Deng ZY, He ZM, Zhao YL (2022) Cracking and deformation of cuboidal sandstone with a single nonpenetrating flaw under uniaxial compression. Theor Appl Fract Mech 119:103284. https://doi.org/10.1016/j.tafmec.2022.103284

    Article  Google Scholar 

  11. Li B, Yang SQ, Tian WL (2019) Experimental study on mechanical behavior of Brazilian disk with two filled and unfilled fissures. J Basic Sci Eng 27(03):628–645. https://doi.org/10.16058/j.issn.1005-0930.2019.03.014

    Article  Google Scholar 

  12. Peng Y, Gao YT, Xie YS, Zhou Y, Wu TH, Shi WW, Dong JL (2023) Experimental study on instability failure of rock mass with rough joints under one-side constraint compression. Theor Appl Fract Mech 125:103907. https://doi.org/10.1016/j.tafmec.2023.103907

    Article  Google Scholar 

  13. Wu TH, Gao YT, Zhou Y, Li JW (2020) Experimental and numerical study on the interaction between holes and fissures in rock-like materials under uniaxial compression. Theor Appl Fract Mech 106:102488. https://doi.org/10.1016/j.tafmec.2020.102488

    Article  Google Scholar 

  14. Ren HL, Song SZ, Ning JG (2022) Investigation into the damage mechanism of concrete in the Brazilian test and flattened Brazilian test through the moment tensor. Eng Fract Mech 262:108093. https://doi.org/10.1016/j.engfracmech.2021.108093

    Article  Google Scholar 

  15. Wong RHC, Chau KT, Tang CA, Lin P (2001) Analysis of crack coalescence in rock-like materials containing three flaws. Part I: experimental approach. Int J Rock Mech Min Sci 38(7):909–924. https://doi.org/10.1016/S1365-1609(01)00064-8

    Article  Google Scholar 

  16. Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39(2):229–241. https://doi.org/10.1016/S1365-1609(02)00027-8

    Article  Google Scholar 

  17. Dou FK, Wang JG, Zhang XX, Wang HM (2019) Effect of joint parameters on fracturing behavior of shale in notched three-point-bending test based on discrete element model. Eng Fract Mech 205:40–56. https://doi.org/10.1016/j.engfracmech.2018.11.017

    Article  Google Scholar 

  18. Xia B, Li Y, Hu H, Luo YF, Peng JJ (2022) Effect of crack angle on mechanical behaviors and damage evolution characteristics of sandstone under uniaxial compression. Rock Mech Rock Eng 55:6567–6582. https://doi.org/10.1007/s00603-022-03016-1

    Article  Google Scholar 

  19. Gong FQ, Li XB, Dong LJ (2013) Algorithm to estimate tensile modulus of rock in disk impact splitting test. Chin J Rock Mech Eng 32(4):705–713

    Google Scholar 

  20. Zhang BH, Liu WF, Deng JH, Liu JF (2016) Damage mechanism and stress wave spectral characteristics of rock under tension. Chin J Geotech Eng 38(S2):336–341

    Google Scholar 

  21. Haeri H, Shahriar K, Marji MF, Moarefvand P (2014) Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. Int J Rock Mech Min Sci 67:20–28. https://doi.org/10.1016/j.ijrmms.2014.01.008

    Article  Google Scholar 

  22. Huang J, Pan X, Li JX, Dong SM, Hua W (2021) Numerical investigation on crack propagation for a central cracked Brazilian disk concerning friction. Appl Sci 11(6):2839. https://doi.org/10.3390/app11062839

    Article  Google Scholar 

  23. Ghazvinian A, Nejati HR, Sarfarazi V, Hadei MR (2013) Mixed mode crack propagation in low brittle rock-like materials. Arab J Geosci 6(11):4435–4444. https://doi.org/10.1007/s12517-012-0681-8

    Article  Google Scholar 

  24. Li DJ, Qi H, Li CX, Feng JL (2020) Brazilian disc splitting tests and numerical simulations on coal samples containing bedding planes. J Min Sci Technol 5(2):150–159. https://doi.org/10.19606/j.cnki.jmst.2020.02.003

    Article  Google Scholar 

  25. Zhou Y, Zhang G, Wu SC, Zhang L (2018) The effect of flaw on rock mechanical properties under the Brazilian test. Kuwait J Sci 45(2):94–103

    Google Scholar 

  26. Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete (the splitting tension test) (part1). J Jpn Soc Civ Eng 29:777

    Google Scholar 

  27. Ministry of Power Industry (1999) People's Republic of China. GB/T 50266–99 standard for tests method of engineering rock Massas. China Planning Press: Beijing

  28. Zhang L, Liu BG (2016) A comparison study of rock strength criteria considering tensile strength. Eng Mech 33(11):201–207. https://doi.org/10.6052/j.issn.1000-4750.2015.08.0642

    Article  Google Scholar 

  29. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  30. Yang SQ, Huang YH, Ranjith P, Jiao YY, Ji J (2015) Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression. Acta Mech Sin 31(6):871–889. https://doi.org/10.1007/s10409-015-0444-3

    Article  MathSciNet  MATH  Google Scholar 

  31. Cho N, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010. https://doi.org/10.1016/j.ijrmms.2007.02.002

    Article  Google Scholar 

  32. Peng J, Wong LNY, Teh CI, Li ZH (2018) Modeling micro-cracking behavior of Bukit Timah granite using grain-based model. Rock Mech Rock Eng 51(1):135–154. https://doi.org/10.1007/s00603-017-1316-x

    Article  Google Scholar 

  33. Feng WL, Qiao CS, Niu SJ (2020) Study on sandstone creep properties of Jushan Mine affected by degree of damage and confining pressure. Bull Eng Geol Env 79(2):869–888. https://doi.org/10.1007/s10064-019-01615-x

    Article  Google Scholar 

  34. Chehreghani S, Noaparast M, Rezai B, Shafaei SZ (2017) Bonded-particle model calibration using response surface methodology. Particuology 32:141–152. https://doi.org/10.1016/j.partic.2016.07.012

    Article  Google Scholar 

  35. Zhou Y, Wu SC, Xu XL, Sun W, Zhang XP (2013) Particle flow analysis of acoustic emission characteristics during rock failure process. Chin J Rock Mech Eng 32(5):951–959. https://doi.org/10.3969/j.issn.1000-6915.2013.05.013

    Article  Google Scholar 

  36. Tian WL, Yang SQ, Huang YH (2016) Particle flow analysis of mechanical behavior and meso-mechanism of sandstone under unloading confining pressure. Rock Soil Mech 37(S2):775–782. https://doi.org/10.16285/j.rsm.2016.S2.098

    Article  Google Scholar 

  37. Zhou Y, Gao YT, Wu SC, Yan Q, Sun H (2015) An equivalent crystal model for mesoscopic behaviour of rock. Chin J Rock Mech Eng 34(03):511–519. https://doi.org/10.13722/j.cnki.jrme.2015.03.008

    Article  Google Scholar 

  38. Zhang XP, Wong LNY (2013) Loading rate effects on cracking behavior of flaw-contained specimens under uniaxial compression. Int J Fract 180(1):93–110. https://doi.org/10.1007/s10704-012-9803-2

    Article  Google Scholar 

  39. Feng WL, Qiao CS, Niu SJ, Yang Z, Wang T (2020) An improved nonlinear damage model of rocks considering initial damage and damage evolution. Int J Damage Mech 29(7):1117–1137. https://doi.org/10.1177/1056789520909531

    Article  Google Scholar 

  40. Zhai YJ (2013) High-stress rock creep and mesoscopic experimental research. Jiangxi University of Science and Technology, China

    Google Scholar 

  41. Gao LN, Chen WG (2009) Application development and prospect of CT technology. Comput Tomogr Theory Appl 18(1):99–109 ((In Chinese))

    Google Scholar 

  42. Zhang QS, Yang GS, Gao GY, Pu YB (2005) Application research of X-ray CT technology in rock damage detection. Mech Eng 27(6):11–19. https://doi.org/10.3969/j.issn.1000-0879.2005.06.002

    Article  Google Scholar 

  43. Zhou Y, Liu B, Wang L, Li X, Ding YP (2017) Mesoscopic mechanical properties of rock-like material containing two circular holes under uniaxial compression. Chin J Rock Mech Eng 36(11):2662–2671. https://doi.org/10.13722/j.cnki.jrme.2017.0501

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-18-016A3) and the National Natural Science Foundation of China (Grants No. 51504016); Thanks for technical supported by ITASCA, USA.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft, YG; Numerical calculations and test, YP; Writing—review & editing, YZ; Supervision, YW.

Corresponding author

Correspondence to Yu Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Peng, Y., Zhou, Y. et al. Meso-mechanism Research on Mechanical Properties of Rock-like with Two Fissures in Brazilian Test. Indian Geotech J 53, 1414–1426 (2023). https://doi.org/10.1007/s40098-023-00760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-023-00760-1

Keywords

Navigation