Skip to main content
Log in

Modeling the Behavior of Geotechnical Constructions Under Cyclic Loading with a Numerical Approach Based on J. Lemaitre Model

  • Original Paper
  • Published:
Indian Geotechnical Journal Aims and scope Submit manuscript

Abstract

A concise prediction of the cyclic accumulation of deformations in non-cohesive soils becomes important for a high number of cycles, but such prediction is troublesome because even small errors of the general purpose constitutive models are quickly accumulated. The solution could be an explicit model that treats accumulation as a sort of creep process. This article presents a numerical fashion the phenomenon of accumulation resulting from cyclic loading in sand in drained state. The first cycle is performed using Hypoplastic model of Wolffersdorff 1996 with the improvement of intergranular strain (IGS). From the second cycle, the behavior of the soil is simulated as a pseudo creep (J. Lemaitre model) where we seek an equivalence between the parameters of J. Lemaitre model and cyclic parameters, Replacing the cyclic effect by a cumulative volumetric strain and the number of cycles (N) is considered equivalent time (t). The prediction of model is compared with experimental values. Good correlation exists between predicted and experimental response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niemunis A, Wichtmann T, Triantafyllidis T (2005) A high-cycle accumulation model for sand. Comput Geotech 32:245–263

    Article  MATH  Google Scholar 

  2. Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. In: Triantafyllidis Th (ed) Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Heft 38

  3. Boulon M, Puech A (1984) Simulation numérique du comportement des pieux sous chargement axial cyclique. Rev Fr Géotech 26:7–20

    Article  Google Scholar 

  4. Diyaljee VA, Raymond GP (1982) Repetitive load deformation of cohesionless soil. J Soil Mech Found Eng Div ASCE GT 10:1215–1229

    Google Scholar 

  5. Boukovalas G, Whitman RV, Marr WA (1984) Permanent displacement of sand with cyclic loading. J Geotech Eng ASCE 110(11):1606–1623

    Article  Google Scholar 

  6. Kaggawa WS, Booker JR, Carter JP (1991) Residual strains in calcareous sand due to irregular cyclic loading. J Geotech Eng ASCE 117(2):201–218

    Article  Google Scholar 

  7. Gotschol A (2002) Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung. Schrif-tenreihe Geotechnik, Universität Gh Kassel, Heft 12

  8. Papon A (2010) Modélisation numérique du comportement des sols sous très grand nombre de cycles. Homogénéisation temporelle et identification des paramètres. Thèse, Ecole Centrale de Nantes

  9. Cao J, Mroueh H, Burlon S (2012) Skipped cycles method for geotechnical structures under large number of cycle loads. Offshore Site Investigation and Geotechnics, SUT, London

  10. Lemaitre J, Chaboche J-L (1996) Mécanique des matériaux solides. Dunod 1996:253–341

    Google Scholar 

  11. Plaxis (2010) Essential for geotechnical professionals, “Material Models Manual”

  12. Helm J, Laue J, Triantafydillis T (2000) Untersuchungen an der RUB zur Verformungsentwicklung von B”oden unter zyklischen Beanspruchungen. In: Triantafyllidis T (ed) Boden unter fast zyklischer Belastung Erfahrungen und Forschungsergebnisse, Bochum, pp 109–133

  13. Kolymbas D (1985) A generalized hypoelastic constitutive law. In: Proceeding of international conference on soil mechanics and foundation engineering

  14. Gudehus G (1996) A comprehensive constitutive equation for granular materials. Soils Found 36(1):1–12

    Article  Google Scholar 

  15. Bauer E (1996) Calibration of a comprehensive hypoplastic model for granular materials. Soils Found 36(1):13–26

    Article  Google Scholar 

  16. Herle Ivo (2008) On basic features of constitutive models for geomaterials. J Theor Appl Mech 38(1–2):61–80

    Google Scholar 

  17. Berenguer Todo Bom L, Modaressi-Farahmand-Razavi A (2014) Constitutive model for granular materials considering grain breakage in finite deformations. Eur J Environ Civ Eng. doi:10.1080/19648189.2014.960101

    Google Scholar 

  18. Kolymbas D (1999) Introduction to hypaplasticity. Advances in Geotechnical Engineering and Tunnelling, 1 edn. A.A.Balkema, Rorredam

  19. Lanier J, Caillerie D, Chambon R, Viggiani G, Bésuelle P, Desrues J (2004) A general formulation of hypoplasticity. Int J Numer Anal Meth Geomech 28:1461–1478

    Article  MATH  Google Scholar 

  20. Anaraki KE (2008) Hypoplasticity investigated parameter determination and numerical simulation. M.S. Thesis, Delft University of Technology, Delft

  21. Masın D (2010) Hypoplasticity for practical applications—Ph.D. course. http://web.natur.cuni.cz/uhigug/masin/hypocourse

  22. Mašín D (2015) Ph.D. Hypoplasticity for practical applications part 4: determination of material parameters course on hypoplasticity. Zhejiang University, June 2015

  23. Engin HK, Jostad HP (2014) On the modelling of grain crushing in hypoplasticity. In: Hicks MA, Brinkgreve RBJ, Rohe A (eds) Numerical methods in geotechnical engineering. Taylor & Francis Group, London

  24. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohesive Frict Mater 2:279–299

    Article  Google Scholar 

  25. Von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mech Cohesive Frict Mater 1:251–271

    Article  Google Scholar 

  26. Atkinson J, Richardson D, Stallebrass S (1990) Effect of recent stress history on the stiffness of overconsolidated soil. Geotechnique 40:531–540

    Article  Google Scholar 

  27. Puzrin M, Burland J (1998) Non-linear model of small strain behavior of soils. Geotechnique 48:217–233

    Article  Google Scholar 

  28. Thanopoulos I (1981) Contribution à l’étude du comportement cyclique des milieux pulvérulents. Thèse, Université Scientifique et médicale & l’institut national polytechnique de Grenoble

  29. Wichtmann T, Niemunis A, Ttiantafyllidis T (2005) Strain accumulation in sand due to cyclic loading: drained cyclic tests. Soil Dyn Earthq Eng 25:967–979

    Article  Google Scholar 

  30. Niemunis A (2003) Extended hypoplastic models for soils. Ruhr-University Bochum, Institute of Soil Mechanics and Foundation Engineering, 2003. 34. www.pg.gda.pl/~aniem/an-liter.html

  31. Wichtmann T (2005) Explicit accumulation model for non-cohesive soils under cyclic loading. Ph.D. thesis, University of Bochum

  32. Gudehus G, Amorosi A, Gens A, Herle I, Kolymbas D, Masın D, Muir Wood D, Nova R, Niemunis A, Pastor M, Tamagnini C, Viggiani G (2008) The soilmodels.info project. Int J Numer Anal Meth Geomech 32(12):1571–1572

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Amrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrane, M., Messast, S. Modeling the Behavior of Geotechnical Constructions Under Cyclic Loading with a Numerical Approach Based on J. Lemaitre Model. Indian Geotech J 48, 520–528 (2018). https://doi.org/10.1007/s40098-017-0275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40098-017-0275-1

Keywords

Navigation