Skip to main content

Advertisement

Log in

Applications of graphene-based tungsten oxide nanocomposites: a review

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

This review describes the various applications of graphene derivative (GO/rGO) with the tungsten oxide nanocomposite such as supercapacitor, electrochromism, photocatalysis and energy sensing. This review article also presents the properties of tungsten oxide with the graphene derivatives and their classification on basis of transition metals, metal oxides, nonmetals, sulfide, and polymers. Graphene oxide is a wonder material that has the potential to impart extraordinary properties into several hybrid materials, resulting in distinctive application in enormous domains. The impressive application and properties of the graphene derivatives have been discussed in this review article. The transition metal oxides (TMOs) have gained considerable research attention due to their unique physicochemical characteristics. Among TMOs, tungsten oxide (WO3) is a versatile material with excellent properties, diverse applications, stability, and low fabrication cost. The enhanced property of tungsten oxide by incorporation of graphene derivatives is also discussed in this review. The main focus of this review article is to summarize the 5-year applications of GO/rGO-based tungsten oxide nanocomposite in energy storage (super capacitors and batteries), gas sensor devices, electrochromism, and photocatalyst. This review article will also provide the research gap and can excite new ideas for further improvement of GO/rGO-based tungsten oxide nanocomposite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

TMOs:

Transition metal oxides

MxWO3 :

M = metal

NIR:

Near-infrared

LIBs:

Lithium-ion batteries

CV:

Crystal violet

BPA:

Bisphenol A

NRs:

Nanorods

MOs:

Metal oxides

AgE:

Silver electrode

PANI-g/rGO@WO3:

Polyaniline-grafted-reduced graphene–tungsten oxide

FGW:

Fe2O3/GO/WO3

FGW 5:

5% GO

FGW 10:

10% GO

FGW 30:

30% GO

FGW 50:

50% GO

RhB:

Rhodamine blue

RHE:

Reversible hydrogen electrode

POM-Ir/WOx/rGO:

Polyoxometalate-derived iriduim/tungsten oxide/reduced graphene oxide

EIS:

Electrochemical impedance spectroscopy

M‐W‐rGO:

1 T-molybdenum disulphide-hexagonal tungsten trioxide-reduced graphene oxide

PL intensity:

Photoluminescence intensity

Rct:

Charge transfer resistance

PEC:

Pulsed Eddy current

NCQDs:

Nitrogen-doped carbon quantum dots

RW400, RW200, RW100:

RGO/WO3 with different Na2WO4·2H2O dosages, the three samples were named RW-100, RW-200, and RW-400

SMX:

Sulfamethoxazole

WM:

WO3/MoO3 with 50% rGO

WM1:

WO3/MoO3 with 0.65 × 103% rGO

WM2:

WO3/MoO3 with 1.30 × 103% rGO

WM3:

WO3/MoO3 with 2.0 × 103% rGO

WM4:

WO3/MoO3 with 2.6 × 103% rGO

OER:

Oxygen evolution reaction

HER:

Hydrogen evolution reaction

APTES:

3-Aminopropyltriethoxysilane

MTV:

Multivariate metal

References

  1. Bursten, J.R., Roco, M.C., Yang, W., et al.: Nano on reflection A number of experts from different areas of nanotechnology describe how the field has evolved in the last ten years. Nat. Nanotechnol. 11, 828–834 (2016)

    Google Scholar 

  2. Dao, T.D., Jeong, H.M.: Graphene prepared by thermal reduction–exfoliation of graphite oxide: effect of raw graphite particle size on the properties of graphite oxide and graphene. Mater. Res. Bull. 70, 651–657 (2015)

    Article  CAS  Google Scholar 

  3. Hu, M., Yao, Z., Wang, X.: Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 56, 3477–3502 (2017)

    Article  CAS  Google Scholar 

  4. Wang, J., Jin, X., Li, C., et al.: Graphene and graphene derivatives toughening polymers: toward high toughness and strength. Chem. Eng. Sci. 370, 831–854 (2019)

    Article  CAS  Google Scholar 

  5. Dutta, V., Singh, P., Shandilya, P., et al.: Review on advances in photocatalytic water disinfection utilizing graphene and graphene derivatives-based nanocomposites. J. Environ. Chem. Eng. 7, 103132 (2019)

    Article  CAS  Google Scholar 

  6. Matijašević, S., Zildžović, S., Stojanović, J., et al.: Removal of uranium (VI) from aqueous solution by acid modified zeolites. Zaštita materijala. 57, 551–558 (2016)

    Article  Google Scholar 

  7. Dai, L., Li, L., Zhu, W., et al.: Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium (VI) adsorption. Bioresour. Technol. 298, 122576 (2020)

    Article  CAS  PubMed  Google Scholar 

  8. Duan, J., Ji, H., Xu, T., et al.: Simultaneous adsorption of uranium (VI) and 2-chlorophenol by activated carbon fiber supported/modified titanate nanotubes (TNTs/ACF): Effectiveness and synergistic effects. Chem. Eng. Sci. 406, 126752 (2021)

    Article  CAS  Google Scholar 

  9. Rout, S., Muduli, B., Kumar, A., et al.: Removal of uranium (VI) from water using hydroxyapatite coated activated carbon powder nanocomposite. J. Environ. Sci. Health A. 55, 596–605 (2020)

    Article  CAS  Google Scholar 

  10. Qiu, M., Liu, Z., Wang, S., et al.: The photocatalytic reduction of U (VI) into U (IV) by ZIF-8/g-C3N4 composites at visible light. Environ. Res. 196, 110349 (2021)

    Article  CAS  PubMed  Google Scholar 

  11. Liu, R., Wang, H., Han, L., et al.: Reductive and adsorptive elimination of U (VI) ions in aqueous solution by SFeS@ biochar composites. Environ. Sci. Pollut. Res. 28, 1–10 (2021)

    Google Scholar 

  12. Chen, R., Cheng, Y., Wang, P., et al.: Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be (II) from Be (NH2) 2 complexing solutions. Chem. Eng. Sci. 421, 129682 (2021)

    Article  CAS  Google Scholar 

  13. Liu, F., Hua, S., Wang, C., et al.: Adsorption and reduction of Cr (VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch. Chemosphere 279, 130539 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. Sabzehmeidani, M.M., Mahnaee, S., Ghaedi, M., et al.: Carbon-based materials: a review of adsorbents for inorganic and organic compounds. Adv. Mater. 2, 598–627 (2021)

    Article  CAS  Google Scholar 

  15. Ciceroni, C., Agresti, A., Di Carlo, A., et al.: Graphene oxide for DSSC, OPV and perovskite stability. In: Korotcenkov, G. (ed.) The Future of Semiconductor Oxides in Next-Generation Solar Cells, pp. 503–531. Elsevier (2018)

  16. Luo, Q., Zhang, Y., Liu, C., et al.: Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. 3, 15996–16004 (2015)

    Article  CAS  Google Scholar 

  17. Ashiq, H., Nadeem, N., Mansha, A., et al.: G-C3N4/Ag@ CoWO4: a novel sunlight active ternary nanocomposite for potential photocatalytic degradation of rhodamine B dye. J. Phys. Chem. Solids 161, 110437 (2021)

    Article  Google Scholar 

  18. Zou, Y., Hu, Y., Shen, Z., et al.: Application of aluminosilicate clay mineral-based composites in photocatalysis. Res. J. Environ. Sci. 115, 190–214 (2022)

    CAS  Google Scholar 

  19. Yao, L., Yang, H., Chen, Z., et al.: Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273, 128576 (2020)

    Article  Google Scholar 

  20. Rastogi, A., Zivcak, M., Sytar, O., et al.: Impact of metal and metal oxide nanoparticles on plant: a critical review. Front. Chem. 5, 78 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  21. George, J.M., Antony, A., Mathew, B.: Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim. Acta 185, 358 (2018)

    Article  Google Scholar 

  22. Xu, H., Zhu, S., Xia, M., et al.: Three-dimension hierarchical composite via in-situ growth of Zn/Al layered double hydroxide plates onto polyaniline-wrapped carbon sphere for efficient naproxen removal. J. Hazard. Mater. 423, 127192 (2021)

    Article  PubMed  Google Scholar 

  23. Parnianchi, F., Nazari, M., Maleki, J., et al.: Combination of graphene and graphene oxide with metal and metal oxide nanoparticles in fabrication of electrochemical enzymatic biosensors. Int. Nano Lett. 8, 229–239 (2018)

    Article  CAS  Google Scholar 

  24. Galstyan, V., Comini, E., Kholmanov, I., et al.: Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC adv. 6, 34225–34232 (2016)

    Article  CAS  Google Scholar 

  25. Sekhar, D.C., Diwakar, B.S., Babu, B.R., et al.: Development of graphene oxide-based hybrid metal oxide nanocomposites of GO-SnO2/ZnO/Fe3O4, GO-SiO2/ZnO/Fe3O4 for energy applications. Phys. B 603, 412749 (2021)

    Article  CAS  Google Scholar 

  26. Kim, H.W., Na, H.G., Kwon, Y.J., et al.: Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interfaces. 9, 31667–31682 (2017)

    Article  CAS  PubMed  Google Scholar 

  27. Achary, L.S.K., Kumar, A., Barik, B., et al.: Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor. Sens. Actuators B Chem. 272, 100–109 (2018)

    Article  CAS  Google Scholar 

  28. Borges, L.G.A., Savi, A., Teixeira, C., et al.: Mechanical ventilation weaning protocol improves medical adherence and results. J. Crit. Care. 41, 296–302 (2017)

    Article  PubMed  Google Scholar 

  29. Feng, Q., Li, X., Wang, J., et al.: Reduced graphene oxide (rGO) encapsulated Co3O4 composite nanofibers for highly selective ammonia sensors. Sens. Actuators B Chem. 222, 864–870 (2016)

    Article  CAS  Google Scholar 

  30. Choi, S.-J., Choi, C., Kim, S.-J., et al.: Facile synthesis of hierarchical porous WO3 nanofibers having 1D nanoneedles and their functionalization with non-oxidized graphene flakes for selective detection of acetone molecules. RSC Adv. 5, 7584–7588 (2015)

    Article  CAS  Google Scholar 

  31. Anand, T., Sahoo, S.K.: Cost-effective approach to detect Cu (II) and Hg (II) by integrating a smartphone with the colorimetric response from a NBD-benzimidazole-based dyad. Phys. Chem. Chem. Phys. 21, 11839–11845 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. Allahbakhsh, A., Arjmand, M.: Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects. Carbon 148, 441–480 (2019)

    Article  CAS  Google Scholar 

  33. Solomon, G., Kohan, M., Landström, A., et al.: Semiconducting metal oxides empowered by graphene and its derivatives: progresses and critical perspective on selected functional applications. Int. J. Appl. Phys. 128, 180905 (2020)

    Article  CAS  Google Scholar 

  34. Zhao, C., Chou, S.-L., Wang, Y., et al.: A facile route to synthesize transition metal oxide/reduced graphene oxide composites and their lithium storage performance. RSC Adv. 3, 16597–16603 (2013)

    Article  CAS  Google Scholar 

  35. Khan, M., Tahir, M.N., Adil, S.F., et al.: Graphene-based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A. 3, 18753–18808 (2015)

    Article  CAS  Google Scholar 

  36. Korotcenkov, G., Cho, B.: Metal oxide composites in conductometric gas sensors: achievements and challenges. Sens. Actuators B Chem. 244, 182–210 (2017)

    Article  CAS  Google Scholar 

  37. Chidembo, A., Aboutalebi, S.H., Konstantinov, K., et al.: Globular reduced graphene oxide-metal oxide structures for energy storage applications. Energy Environ. Sci. 5, 5236–5240 (2012)

    Article  CAS  Google Scholar 

  38. Jeevitha, G., Abhinayaa, R., Mangalaraj, D., et al.: Tungsten oxide-graphene oxide (WO3-GO) nanocomposite as an efficient photocatalyst, antibacterial and anticancer agent. J Phys Chem Solids. 116, 137–147 (2018)

    Article  CAS  Google Scholar 

  39. Martins, G., Salvador, A.F., Pereira, L., et al.: Methane production and conductive materials: a critical review. Environ. Sci. Technol. 52, 10241–10253 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Z., Gong, W., Wang, X., et al.: Remarkable near-infrared electrochromism in tungsten oxide driven by interlayer water-induced battery-to-pseudocapacitor transition. ACS Appl. Mater. Interfaces. 12, 33917–33925 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Godbole, R., Godbole, V., Bhagwat, S.: Surface morphology dependent tungsten oxide thin films as toxic gas sensor. Mater Sci Semicond Process. 63, 212–219 (2017)

    Article  CAS  Google Scholar 

  42. Shehzad, N., Tahir, M., Johari, K., et al.: Fabrication of highly efficient and stable indirect Z-scheme assembly of AgBr/TiO2 via graphene as a solid-state electron mediator for visible light induced enhanced photocatalytic H2 production. Appl. Surf. Sci. 463, 445–455 (2019)

    Article  CAS  Google Scholar 

  43. Cronin, J.P., Agrawal, A., Adams, L.: Electrochromic device structures with conductive nanoparticles. U.S. Patent Application No. 16/259195 (2019)

  44. Pourbaix, M.: Atlas of electrochemical equilibria in aqueous solution, p. 307. National Association of Corrosion Engineers, Houston (1974)

    Google Scholar 

  45. Cavalcante, L., Sczancoski, J., Espinosa, J., et al.: Photoluminescent behavior of BaWO4 powders processed in microwave-hydrothermal. J. Alloys Compd. 474, 195–200 (2009)

    Article  CAS  Google Scholar 

  46. Song, J., Huang, Z.-F., Pan, L., et al.: Oxygen-deficient tungsten oxide as versatile and efficient hydrogenation catalyst. ACS Catal. 5, 6594–6599 (2015)

    Article  CAS  Google Scholar 

  47. Shaver, P.: Activated tungsten oxide gas detectors. Appl. Phys. Lett. 11, 255–257 (1967)

    Article  CAS  Google Scholar 

  48. Deb, S.: Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. Lett. 27, 801–822 (1973)

    Article  CAS  Google Scholar 

  49. Hodes, G., Cahen, D., Manassen, J.: Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC). Nature 260, 312–313 (1976)

    Article  CAS  Google Scholar 

  50. Butler, M., Nasby, R., Quinn, R.K.: Tungsten trioxide as an electrode for photoelectrolysis of water. Solid State Commun. 19, 1011–1014 (1976)

    Article  CAS  Google Scholar 

  51. Huang, Z.-F., Song, J., Li, K., et al.: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 138, 1359–1365 (2016)

    Article  CAS  PubMed  Google Scholar 

  52. Wu, C.-M., Naseem, S., Chou, M.-H., et al.: Recent advances in tungsten-oxide-based materials and their applications. Front. Mater. Sci. 6, 49 (2019)

    Article  Google Scholar 

  53. Huang, Z.F., Song, J., Pan, L., et al.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. Zheng, H., Ou, J.Z., Strano, M.S., et al.: Nanostructured tungsten oxide–properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011)

    Article  CAS  Google Scholar 

  55. Chacón, C., Rodríguez-Pérez, M., Oskam, G., et al.: Synthesis and characterization of WO3 polymorphs: monoclinic, orthorhombic and hexagonal structures. J. Mater. Sci. Mater. Electron. 26, 5526–5531 (2015)

    Article  Google Scholar 

  56. Shinde, P.A., Jun, S.C.: Review on recent progress in the development of tungsten oxide-based electrodes for electrochemical energy storage. Chem. Sus. Chem. 13, 11–38 (2020)

    Article  CAS  Google Scholar 

  57. Wang, J., Ji, Y., Yin, R., et al.: Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. 7, 6411–6416 (2019)

    Article  CAS  Google Scholar 

  58. Kumar, A., Raizada, P., Hosseini-Bandegharaei, A., et al.: C–, N–vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges. J. Mater. Chemis. A 9, 111–153 (2021)

    Article  CAS  Google Scholar 

  59. Yu, Y., Zhao, Y., Qiao, Y.-L., et al.: Defect engineering of rutile TiO2 ceramics: route to high voltage stability of colossal permittivity. J. Mater. Sci. Technol. 84, 10–15 (2021)

    Article  CAS  Google Scholar 

  60. Liu, Q., Wang, F., Lin, H., et al.: Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal. Sci. Technol. 8, 4399–4406 (2018)

    Article  CAS  Google Scholar 

  61. Guan, H., Huang, S., Ding, J., et al.: Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020)

    Article  CAS  Google Scholar 

  62. Davazoglou, D., Dritsas, T.: Fabrication and calibration of a gas sensor-based on chemically vapor deposited WO3 films on silicon substrates: application to H2 sensing. Sens. Actuators B Chem. 77, 359–362 (2001)

    Article  CAS  Google Scholar 

  63. Ionescu, R., Llobet, E., Al-Khalifa, S., et al.: Response model for thermally modulated tin oxide-based microhotplate gas sensors. Sens. Actuators B Chem. 95, 203–211 (2003)

    Article  CAS  Google Scholar 

  64. Stankova, M., Vilanova, X., Llobet, E., et al.: Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors. Sens. Actuators B Chem. 105, 271–277 (2005)

    Article  CAS  Google Scholar 

  65. Lu, Y., Jiang, Y., Gao, X., et al.: Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. J. Am. Chem. Soc. 136, 11687–11697 (2014)

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J., Jo, C., Park, B., et al.: Simple fabrication of flexible electrodes with high metal-oxide content: electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications. Nanoscale 6, 10147–10155 (2014)

    Article  CAS  PubMed  Google Scholar 

  67. Huang, X., Zhang, Z., Li, H., et al.: In-situ growth of nanowire WO2.72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance. J. Energy Chem. 29, 58–64 (2019)

    Article  Google Scholar 

  68. Yan, J., Wang, T., Wu, G., et al.: Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 27, 1580–1586 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. Chala, T.F., Wu, C.-M., Chou, M.-H., et al.: Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Appl. Mater. Interfaces. 10, 28955–28962 (2018)

    Article  CAS  PubMed  Google Scholar 

  70. Dong, P., Hou, G., Xi, X., et al.: WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci 4, 539–557 (2017)

    CAS  Google Scholar 

  71. Van Bommel, A., Crombeen, J.V., Tooren, A.: LEED and auger electron observations of the SiC (0001) surface. Surf. Sci. 48, 463–472 (1975)

    Article  Google Scholar 

  72. Kano, E., Kvashnin, D.G., Sakai, S., et al.: One-atom-thick 2D copper oxide clusters on graphene. Nanoscale 9, 3980–3985 (2017)

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen, B.H., Nguyen, V.H.: Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci. 7, 023002 (2016)

    Google Scholar 

  74. Singh, M., Yadav, A., Kumar, S., et al.: Annealing induced electrical conduction and band gap variation in thermally reduced graphene oxide films with different sp2/sp3 fraction. Appl Surf Sci. 326, 236–242 (2015)

    Article  CAS  Google Scholar 

  75. Wu, S., Jia, Q., Dai, W.: Synthesis of RGO/TiO2 hybrid as a high performance photocatalyst. Ceram. Inter. 43, 1530–1535 (2017)

    Article  CAS  Google Scholar 

  76. Sehrawat, P., Islam, S., Mishra, P., et al.: Reduced graphene oxide (rGO)-based wideband optical sensor and the role of temperature, defect states and quantum efficiency. Sci. Rep. 8, 1–13 (2018)

    Google Scholar 

  77. Malas, A., Bharati, A., Verkinderen, O., et al.: Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers 9, 613 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang, X., Liu, F., Jiang, P., et al.: Is graphene oxide an insulating material? In 2013 IEEE International Conference on Solid Dielectrics (ICSD). (2013)

  79. Zhu, Y., Murali, S., Cai, W., et al.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)

    Article  CAS  PubMed  Google Scholar 

  80. Mohan, V.B., Liu, D., Jayaraman, K., et al.: Improvements in electronic structure and properties of graphene derivatives. Adv. Mater. Lett. 7, 421–429 (2016)

    Article  CAS  Google Scholar 

  81. Rabchinskii, M.K., Ryzhkov, S.A., Kirilenko, D.A., et al.: From graphene oxide towards aminated graphene: facile synthesis, its structure and electronic properties. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  82. Hu, Y., Shen, Z., Li, B., et al.: Solvent effects on photocatalytic anaerobic oxidation of benzyl alcohol over Pt-loaded defective SrTiO3 nanoparticles. ACS Appl. Nano Mater. 4, 9254–9264 (2021)

    Article  CAS  Google Scholar 

  83. Mondal, A., Prabhakaran, A., Gupta, S., et al.: Boosting photocatalytic activity using reduced graphene oxide (RGO)/semiconductor nanocomposites: issues and future scope. ACS Omega 6, 8734–8743 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Geng, X., Lu, P., Zhang, C., et al.: Room-temperature NO2 gas sensors-based on rGO@ZnO1-x composites: experiments and molecular dynamics simulation. Sens. Actuators B Chem. 282, 690–702 (2019)

    Article  CAS  Google Scholar 

  85. Thiyagarajan, K., Muralidharan, M., Sivakumar, K.: Defects induced magnetism in WO3 and reduced graphene oxide/WO3 nanocomposites. J. Supercond. Nov. Magn. 31, 117–125 (2018)

    Article  CAS  Google Scholar 

  86. Zhang, X.-J., Wang, G.-S., Cao, W.-Q., et al.: Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces. 6, 7471–7478 (2014)

    Article  CAS  PubMed  Google Scholar 

  87. Yu, C., Chang, X., Liu, J., et al.: Creation of reduced graphene oxide-based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates. ACS Appl. Mater. Interfaces. 7, 10718–10726 (2015)

    Article  CAS  PubMed  Google Scholar 

  88. Toda, K., Furue, R., Hayami, S.: Recent progress in applications of graphene oxide for gas sensing: a review. Anal. Chim. Acta. 878, 43–53 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, X., Hu, S., Wang, M., et al.: Continuous graphene and carbon nanotube-based high flexible and transparent pressure sensor arrays. Nanotechnology 26, 115501 (2015)

    Article  PubMed  Google Scholar 

  90. Kumar, S., Kumar, S., Srivastava, S., et al.: Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosens. Bioelectron. 73, 114–122 (2015)

    Article  CAS  PubMed  Google Scholar 

  91. Xu, Y., Bai, H., Lu, G., et al.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  CAS  PubMed  Google Scholar 

  92. Wei, Y., Zhang, Y., Gao, X., et al.: Multilayered graphene oxide membranes for water treatment: a review. Carbon 139, 964–981 (2018)

    Article  CAS  Google Scholar 

  93. Li, D., Müller, M.B., Gilje, S., et al.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008)

    Article  CAS  PubMed  Google Scholar 

  94. Wang, X., Yan, C., Sumboja, A., et al.: Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material. J. Nanosci. Nanotechnol. 14, 7104–7110 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Bakker, E., Telting-Diaz, M.: Electrochemical sensors. Anal. Chem. 74, 2781–2800 (2002)

    Article  CAS  PubMed  Google Scholar 

  96. Lee, E., Hong, J.-Y., Kang, H., et al.: Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation. J. Hazard. Mater. 219, 13–18 (2012)

    Article  PubMed  Google Scholar 

  97. Tabasum, A., Alghuthaymi, M., Qazi, U.Y., et al.: UV-accelerated photocatalytic degradation of pesticide over magnetite and cobalt ferrite decorated graphene oxide composite. Plants 10, 6 (2021)

    Article  CAS  Google Scholar 

  98. Tabasum, A., Bhatti, I.A., Nadeem, N., et al.: Degradation of acetamiprid using graphene-oxide-based metal (Mn and Ni) ferrites as Fenton-like photocatalysts. Water Sci. Technol. 81, 178–189 (2020)

    Article  PubMed  Google Scholar 

  99. Nadeem, N., Zahid, M., Tabasum, A., et al.: Degradation of reactive dye using heterogeneous photo-Fenton catalysts: ZnFe2O4 and GO-ZnFe2O4 composite. Mater. Res. Express. 7, 015519 (2020)

    Article  CAS  Google Scholar 

  100. Qureshi, K., Ahmad, M.Z., Bhatti, I.A., et al.: Graphene oxide decorated ZnWO4 architecture synthesis, characterization and photocatalytic activity evaluation. J. Mol. Liq. 285, 778–789 (2019)

    Article  CAS  Google Scholar 

  101. Asma, T., Muhammad, Z., Haq Nawaz, B., et al.: Fe3O4 -GO composite as efficient heterogeneous photo-Fenton’s catalyst to degrade pesticides. Mater. Res. Express. 6, 015608 (2019)

    Google Scholar 

  102. Upadhyay, R.K., Soin, N., Roy, S.S.: Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv. 4, 3823–3851 (2014)

    Article  CAS  Google Scholar 

  103. Xiang, Q., Yu, J., Jaroniec, M.: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  CAS  PubMed  Google Scholar 

  104. Shakoor, F., Aldaghfag, S.A., Yaseen, M., et al.: Physical characteristics of barium-based cubic perovskites. Chem. Phys. Lett. 779, 138835 (2021)

    Article  CAS  Google Scholar 

  105. Zahid, M., Nawab, Y., Gulzar, N., et al.: Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J. Mater. Sci. Mater. Electron. 31, 967–974 (2020)

    Article  CAS  Google Scholar 

  106. Singh, A.P., Mishra, M., Chandra, A., et al.: Graphene oxide/ferrofluid/cement composites for electromagnetic interference shielding application. Nanotechnology 22, 465701 (2011)

    Article  PubMed  Google Scholar 

  107. Jia, Z., Zhang, M., Liu, B., et al.: Graphene foams for electromagnetic interference shielding: a review. ACS Appl. Nano Mater. 3, 6140–6155 (2020)

    Article  CAS  Google Scholar 

  108. Anand, A., Unnikrishnan, B., Wei, S.-C., et al.: Graphene oxide and carbon dots as broad-spectrum antimicrobial agents—a minireview. Nanoscale Horiz. 4, 117–137 (2019)

    Article  CAS  PubMed  Google Scholar 

  109. Pandit, S., Gaska, K., Kádár, R., et al.: Graphene-based antimicrobial biomedical surfaces. Chem. Phys. Chem. 22, 250 (2021)

    Article  CAS  PubMed  Google Scholar 

  110. Fatima, N., Qazi, U.Y., Mansha, A., et al.: Recent developments for antimicrobial applications of graphene-based polymeric composites: a review. J Ind Eng Chem. 100, 40–58 (2021)

    Article  CAS  Google Scholar 

  111. Vasseghian, Y., Dragoi, E.-N., Moradi, M., et al.: A review on graphene-based electrochemical sensor for mycotoxins detection. Food Chem. Toxicol. 148, 111931 (2021)

    Article  PubMed  Google Scholar 

  112. Chatterjee, S.G., Chatterjee, S., Ray, A.K., et al.: Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)

    Article  Google Scholar 

  113. Olabi, A., Abdelkareem, M.A., Wilberforce, T., et al.: Application of graphene in energy storage device—a review. Renew. Sust. Energ. Rev. 135, 110026 (2021)

    Article  CAS  Google Scholar 

  114. Askari, M.B., Salarizadeh, P., Seifi, M., et al.: ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. J. Alloys Compd. 860, 158497 (2021)

    Article  CAS  Google Scholar 

  115. Sharma, N., Sharma, V., Jain, Y., et al.: Synthesis and characterization of graphene oxide (GO) and reduced graphene oxide (rGO) for gas sensing application. Macromol. Symp. 376, 1700006 (2017)

    Article  Google Scholar 

  116. Ul Haque, S., Nasar, A., Rahman, M.M.: Applications of chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) conducting composite electrode for energy generation in glucose biofuel cell. Sci. Rep. 10, 1–12 (2020)

    Article  Google Scholar 

  117. Choi, Y.-J., Kim, E., Han, J., et al.: A novel biomolecule-mediated reduction of graphene oxide: a multifunctional anti-cancer agent. Molecules 21, 375 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jose, P.P.A., Kala, M., Joseph, A.V., et al.: Reduced graphene oxide/silver nanohybrid as a multifunctional material for antibacterial, anticancer, and SERS applications. Appl. Phys. A. 126, 1–16 (2020)

    Article  Google Scholar 

  119. Tian, F., Lyu, J., Shi, J., et al.: Graphene and graphene-like two-denominational materials-based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens. Bioelectron. 89, 123–135 (2017)

    Article  CAS  PubMed  Google Scholar 

  120. Zhong, X., Lu, Z., Liang, W., et al.: The fabrication of 3D hierarchical flower-like δ-MnO2@COF nanocomposites for the efficient and ultra-fast removal of UO22+ ions from aqueous solution. Environ. Sci. 7, 3303–3317 (2020)

    CAS  Google Scholar 

  121. Pu, F., Bai, Y., Lv, J., et al.: Yolk–shell Cu2O@CuO‐decorated RGO for high‐performance lithium‐ion battery anode. Energy Environ. Mater. 1–8 (2021)

  122. Alkhouzaam, A., Qiblawey, H.: Functional GO-based membranes for water treatment and desalination: fabrication methods, performance and advantages. A review. Chemosphere 274, 129853 (2021)

    Article  CAS  PubMed  Google Scholar 

  123. Panahi-Sarmad, M., Goodarzi, V., Amirkiai, A., et al.: Programing polyurethane with systematic presence of graphene-oxide (GO) and reduced graphene-oxide (rGO) platelets for adjusting of heat-actuated shape memory properties. Eur. Polym. J. 118, 619–632 (2019)

    Article  CAS  Google Scholar 

  124. Hao, P., Lin, Z., Song, P., et al.: rGO-wrapped porous LaFeO3 microspheres for high-performance triethylamine gas sensors. Ceram. Int. 46, 9363–9369 (2020)

    Article  CAS  Google Scholar 

  125. Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano lette. 9, 814–818 (2009)

    Article  CAS  Google Scholar 

  126. Zhou, M., Yan, J., Cui, P.: Synthesis and enhanced photocatalytic performance of WO3 nanorods@ graphene nanocomposites. Mater. Lett. 89, 258–261 (2012)

    Article  CAS  Google Scholar 

  127. Nagaraju, P., Alsalme, A., Alkathiri, A.M., et al.: Rapid synthesis of WO3/graphene nanocomposite via in-situ microwave method with improved electrochemical properties. J Phys Chem Solids. 120, 250–260 (2018)

    Article  CAS  Google Scholar 

  128. Guo, J., Li, Y., Zhu, S., et al.: Synthesis of WO3@graphene composite for enhanced photocatalytic oxygen evolution from water. Rsc Adv. 2, 1356–1363 (2012)

    Article  CAS  Google Scholar 

  129. Hu, X., Xu, P., Gong, H., et al.: Synthesis and characterization of WO3/graphene nanocomposites for enhanced photocatalytic activities by one-step in-situ hydrothermal reaction. Materials 11, 147 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhi, M., Huang, W., Shi, Q., et al.: Sol–gel fabrication of WO3/RGO nanocomposite film with enhanced electrochromic performance. RSC Adv. 6, 67488–67494 (2016)

    Article  CAS  Google Scholar 

  131. Firat, Y.: Pseudocapacitive energy storage properties of rGO/WO3 electrode synthesized by electrodeposition. Mater. Sci. Semicond. Process. 133, 105938 (2021)

    Article  CAS  Google Scholar 

  132. Yadav, A., Hunge, Y., Kang, S.-W.: Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf. Interfaces 24, 101075 (2021)

    Article  CAS  Google Scholar 

  133. Kalaiarasi, S., Kavitha, M., Karpagavinayagam, P., et al.: Tungsten oxide decorated graphene oxide nanocomposite: chemical synthesis, characterization and application in super capacitors. Mater. Today Proc. 1–8 (2020)

  134. Liu, B., Wang, Y., Jiang, H.-W., et al.: WO3 nanowires on graphene sheets as negative electrode for supercapacitors. J. Nanomater. 2017, 2494109 (2017)

    Article  Google Scholar 

  135. Huang, S.-Y., Le, P.-A., Yen, P.-J., et al.: Cathodic plasma–induced syntheses of graphene nanosheet/MnO2/WO3 architectures and their use in supercapacitors. Electrochim. Acta. 342, 136043 (2020)

    Article  CAS  Google Scholar 

  136. Shchegolkov, A.V., Jang, S.-H., Shchegolkov, A.V., et al.: A brief overview of electrochromic materials and related devices: a nanostructured materials perspective. Nanomaterials 11, 2376 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Demon, S.Z.N., Kamisan, A.I., Abdullah, N., et al.: Graphene-based materials in gas sensor applications: a review. Sens. Mater. 32, 759–777 (2020)

    CAS  Google Scholar 

  138. Su, L., Fan, X., Wang, C., et al.: Advances in photonics of recently developed xenes. Nanophotonics. 9, 1621–1649 (2020)

    Article  Google Scholar 

  139. Wan, P., Wen, X., Sun, C., et al.: Flexible transparent films-based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small 11, 5409–5415 (2015)

    Article  CAS  PubMed  Google Scholar 

  140. Li, X., Sheng, X., Guo, Y., et al.: Multifunctional HDPE/CNTs/PW composite phase change materials with excellent thermal and electrical conductivities. J Mater Sci Technol. 86, 171–179 (2021)

    Article  CAS  Google Scholar 

  141. Tao, W., Ji, X., Zhu, X., et al.: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics. Adv. Mater. 30, 1802061 (2018)

    Article  Google Scholar 

  142. Shi, M., Zhu, H., Yang, C., et al.: Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors. Chin. J. Chem. Eng. In press and available online (2021)

  143. Luo, M., Fan, T., Zhou, Y., et al.: 2D black phosphorus–based biomedical applications. Adv. Funct. Mater. 29, 1808306 (2019)

    Article  Google Scholar 

  144. Wang, L., Huang, H., Xiao, S., et al.: Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@cross-linked PANI with p–n heterojunctions. ACS Appl. Mater. Interfaces. 6, 14131–14140 (2014)

    Article  CAS  PubMed  Google Scholar 

  145. Meng, F., Hou, N., Ge, S., et al.: Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs). J. Alloys Compd. 626, 124–130 (2015)

    Article  CAS  Google Scholar 

  146. Abideen, Z.U., Katoch, A., Kim, J.-H., et al.: Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets. Sens. Actuators B Chem. 221, 1499–1507 (2015)

    Article  CAS  Google Scholar 

  147. Patil, S.J., Patil, A.V., Dighavkar, C.G., et al.: Semiconductor metal oxide compounds-based gas sensors: a literature review. Front. Mater. Sci. 9, 14–37 (2015)

    Article  Google Scholar 

  148. Zhang, X., Sun, X., Lv, T., et al.: Preparation of PI porous fiber membrane for recovering oil-paper insulation structure. J. Mater. Sci. Mater. Electron. 31, 13344–13351 (2020)

    Article  CAS  Google Scholar 

  149. Fardindoost, S., Rahimi, F., Ghasempour, R.: Pd doped WO3 films prepared by sol–gel process for hydrogen sensing. Int. J. Hydrog. Energy. 35, 854–860 (2010)

    Article  CAS  Google Scholar 

  150. Xie, Z., Xu, H., Rong, F., et al.: Hydrogen activity tuning of Pt-doped WO3 photonic crystal. Thin Solid Films 520, 4063–4067 (2012)

    Article  CAS  Google Scholar 

  151. Choi, S.-J., Fuchs, F., Demadrille, R., et al.: Fast responding exhaled-breath sensors using WO3 hemitubes functionalized by graphene-based electronic sensitizers for diagnosis of diseases. ACS Appl. Mater. Interfaces. 6, 9061–9070 (2014)

    Article  CAS  PubMed  Google Scholar 

  152. Tu, N.D.K., Choi, J., Park, C.R., et al.: Remarkable conversion between n-and p-type reduced graphene oxide on varying the thermal annealing temperature. Chem. Mater. 27, 7362–7369 (2015)

    Article  Google Scholar 

  153. Phan, D.-T., Chung, G.-S.: p–n junction characteristics of graphene oxide and reduced graphene oxide on n-type Si(111). J. Phys. Chem. Solids. 74, 1509–1514 (2013)

    Article  CAS  Google Scholar 

  154. Qin, N., Wang, X., Xiang, Q., et al.: A biomimetic nest-like ZnO: controllable synthesis and enhanced ethanol response. Sens. Actuators B Chem. 191, 770–778 (2014)

    Article  CAS  Google Scholar 

  155. Shankar, P., Rayappan, J.B.B.: Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. Sci. Lett. J. 4, 126 (2015)

    Google Scholar 

  156. Yin, M., Yao, Y., Fan, H., et al.: WO3-SnO2 nanosheet composites: hydrothermal synthesis and gas sensing mechanism. J. Alloys Compd. 736, 322–331 (2018)

    Article  CAS  Google Scholar 

  157. Shi, J., Cheng, Z., Gao, L., et al.: Facile synthesis of reduced graphene oxide/hexagonal WO3 nanosheets composites with enhanced H2S sensing properties. Sens. Actuators B Chem. 230, 736–745 (2016)

    Article  CAS  Google Scholar 

  158. Hao, Q., Liu, T., Liu, J., et al.: Controllable synthesis and enhanced gas sensing properties of a single-crystalline WO3–rGO porous nanocomposite. RSC Adv. 7, 14192–14199 (2017)

    Article  CAS  Google Scholar 

  159. Jiang, Z., Chen, W., Jin, L., et al.: High performance acetylene sensor with heterostructure-based on WO3 nanolamellae/reduced graphene oxide (rGO) nanosheets operating at low temperature. Nanomaterials 8, 909 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jeevitha, G., Abhinayaa, R., Mangalaraj, D., et al.: Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH3 at room temperature. Nanoscale Adv. 1, 1799–1811 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sandil, D., Srivastava, S., Malhotra, B., et al.: Biofunctionalized tungsten trioxide-reduced graphene oxide nanocomposites for sensitive electrochemical immunosensing of cardiac biomarker. J. Alloys Compd. 763, 102–110 (2018)

    Article  CAS  Google Scholar 

  162. Zhao, B., Lu, S., Zhang, X., et al.: Porous WO3/reduced graphene oxide composite film with enhanced electrochromic properties. Ionics 22, 261–267 (2016)

    Article  CAS  Google Scholar 

  163. Khan, A., Bhosale, N., Mali, S., et al.: Reduced graphene oxide layered WO3 thin film with enhanced electrochromic properties. J. Colloid Interface Sci. 571, 185–193 (2020)

    Article  CAS  PubMed  Google Scholar 

  164. Jo, C., Hwang, I., Lee, J., et al.: Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes. J. Phys. Chem. C. 115, 11880–11886 (2011)

    Article  CAS  Google Scholar 

  165. Machida, K.I., Enyo, M.: Structural and electrochromic properties of tungsten and molybdenum trioxide electrodes in acidic media. J. Electrochem. Soc. 137, 1169–1175 (1990)

    Article  CAS  Google Scholar 

  166. Conway, B.E., Birss, V., Wojtowicz, J.: The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sour. 66, 1–14 (1997)

    Article  CAS  Google Scholar 

  167. Zhu, M., Meng, W., Huang, Y., et al.: Proton-insertion-enhanced pseudocapacitance-based on the assembly structure of tungsten oxide. ACS Appl. Mater. Interfaces. 6, 18901–18910 (2014)

    Article  CAS  PubMed  Google Scholar 

  168. Cai, Y., Wang, Y., Deng, S., et al.: Graphene nanosheets-tungsten oxides composite for supercapacitor electrode. Ceram. Int. 40, 4109–4116 (2014)

    Article  CAS  Google Scholar 

  169. Xing, L.-L., Huang, K.-J., Fang, L.-X.: Preparation of layered graphene and tungsten oxide hybrids for enhanced performance supercapacitors. Dalton Trans. 45, 17439–17446 (2016)

    Article  CAS  PubMed  Google Scholar 

  170. Ma, L., Zhou, X., Xu, L., et al.: Hydrothermal preparation and supercapacitive performance of flower-like WO3·H2O/reduced graphene oxide composite. Colloids Surf. A Physicochem. Eng. 481, 609–615 (2015)

    Article  CAS  Google Scholar 

  171. Ribeiro, D., Abrantes, J.: Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Constr. Build. Mater. 111, 98–104 (2016)

    Article  CAS  Google Scholar 

  172. Park, S.K., Lee, H.J., Lee, M.H., et al.: Hierarchically structured reduced graphene oxide/WO3 frameworks for an application into lithium ion battery anodes. Chem. Eng. Sci. 281, 724–729 (2015)

    Article  CAS  Google Scholar 

  173. Chu, J., Lu, D., Wang, X., et al.: WO3 nanoflower coated with graphene nanosheet: synergetic energy storage composite electrode for supercapacitor application. J. Alloys Compd. 702, 568–572 (2017)

    Article  CAS  Google Scholar 

  174. Wong, C.P.P., Lee, K.M., Lai, C.W.: Hydrothermal preparation of reduced graphene oxide/tungsten trioxide nanocomposites with enhanced electrochemical performance. J. Mater. Sci. Mater. Electron. 28, 14554–14567 (2017)

    Article  CAS  Google Scholar 

  175. Korkmaz, S., Tezel, F.M., Kariper, İ: Facile synthesis and characterization of graphene oxide/tungsten oxide thin film supercapacitor for electrochemical energy storage. Physica E Low Dimens. Syst. Nanostruct. 116, 113718 (2020)

    Article  CAS  Google Scholar 

  176. Ibrahim, Y.O., Gondal, M., Alaswad, A., et al.: Laser-induced anchoring of WO3 nanoparticles on reduced graphene oxide sheets for photocatalytic water decontamination and energy storage. Ceram. Int. 46, 444–451 (2020)

    Article  CAS  Google Scholar 

  177. Ji, B., Zhang, F., Song, X., et al.: A novel potassium-ion-based dual-ion battery. Adv. Mater. 29, 1700519 (2017)

    Article  Google Scholar 

  178. Tong, X., Zhang, F., Ji, B., et al.: Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries. Adv. Mater. 28, 9979–9985 (2016)

    Article  CAS  PubMed  Google Scholar 

  179. Wang, M., Jiang, C., Zhang, S., et al.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018)

    Article  CAS  PubMed  Google Scholar 

  180. Zhang, X., Tang, Y., Zhang, F., et al.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  181. Yoon, S., Pyo, S.G., Son, H., et al.: Investigation of novel nanostructured tungsten oxides as high volumetric and safe anode materials in lithium ion batteries. 224th ECS Meeting Abstracts. MA2013, 2, 1089 (2013)

  182. Gu, X., Wu, F., Lei, B., et al.: Three-dimensional nitrogen-doped graphene frameworks anchored with bamboo-like tungsten oxide nanorods as high performance anode materials for lithium ion batteries. J. Power Sources. 320, 231–238 (2016)

    Article  CAS  Google Scholar 

  183. Herdt, T., Deckenbach, D., Bruns, M., et al.: Tungsten oxide nanorod architectures as 3D anodes in binder-free lithium-ion batteries. Nanoscale 11, 598–610 (2019)

    Article  CAS  PubMed  Google Scholar 

  184. Kumar, A., Raizada, P., Singh, P., et al.: Perspective and status of polymeric graphitic carbon nitride-based Z-scheme photocatalytic systems for sustainable photocatalytic water purification. Chem. Eng. Sci. 391, 123496 (2020)

    Article  CAS  Google Scholar 

  185. Wang, Z., Li, C., Domen, K.: Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 48, 2109–2125 (2019)

    Article  CAS  PubMed  Google Scholar 

  186. Zahid, M., Nadeem, N., Tahir, N., et al.: Hybrid nanomaterials for water purification. In: Abd-Elsalam, K.A. (ed.) Multifunctional hybrid nanomaterials for sustainable agri-food and ecosystems, pp. 155–188. Elsevier, Amsterdam (2020)

    Chapter  Google Scholar 

  187. Nadeem, N., Zahid, M., Rehan, Z A., et al.: Improved photocatalytic degradation of dye using coal fly ash-based zinc ferrite (CFA/ZnFe2O4) composite. Int J Environ Sci Technol. (2021) (In press and available online)

  188. Nadeem, N., Abbas, Q., Yaseen, M., et al.: Coal fly ash-based copper ferrite nanocomposites as potential heterogeneous photocatalysts for wastewater remediation. Appl. Surf. Sci. 565, 150542 (2021)

    Article  CAS  Google Scholar 

  189. Nadeem, N., Zahid, M., Bhatti, H.N., et al.: Wastewater remediation using coal fly ash nanocomposites, in aquananotechnology, pp. 149–174. Elsevier, Amsterdam (2021)

    Google Scholar 

  190. Nadeem, N., Zahid, M., Hanif, M.A., et al.: Silver-doped metal ferrites for wastewater treatment, in silver nanomaterials for agri-food applications, pp. 599–622. Elsevier, Amsterdam (2021)

    Book  Google Scholar 

  191. Nadeem, N., Yaseen, M., Rehan, Z.A., et al.: Coal fly ash supported CoFe2O4 nanocomposites: Synergetic Fenton-like and photocatalytic degradation of methylene blue. Environ. Res. 112280 (2021)

  192. Singh, P., Shandilya, P., Raizada, P., et al.: Review on various strategies for enhancing photocatalytic activity of graphene-based nanocomposites for water purification. Arab. J. Chem. 13, 3498–3520 (2020)

    Article  CAS  Google Scholar 

  193. Sonu., Dutta, V., Sharma, S., et al.: Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc.s. 23, 1119–1136 (2019)

  194. Raizada, P., Sudhaik, A., Singh, P., et al.: Ag3PO4 modified phosphorus and sulphur co-doped graphitic carbon nitride as a direct Z-scheme photocatalyst for 2, 4-dimethyl phenol degradation. J. Photochem. Photobiol. A. 374, 22–35 (2019)

    Article  CAS  Google Scholar 

  195. Zahid, M., Nadeem, N., Hanif, M.A., et al.: Metal ferrites and their graphene-based nanocomposites: synthesis, characterization, and applications in wastewater treatment. In: Magnetic nanostructures. Springer, Cham, 181-212 (2019)

  196. Rahman, M.U., Qazi, U.Y., Hussain, T., et al.: Solar driven photocatalytic degradation potential of novel graphitic carbon nitride-based nanozero-valent iron doped bismuth ferrite ternary composite. Opt. Mater. 120, 111408 (2021)

    Article  CAS  Google Scholar 

  197. Saher, R., Hanif, M.A., Mansha, A., et al.: Sunlight-driven photocatalytic degradation of rhodamine B dye by Ag/FeWO4/g-C3N4 composites. Int J Environ Sci Technol. 18, 927–938 (2021)

    Article  CAS  Google Scholar 

  198. Saeed, H., Nadeem, N., Zahid, M., et al.: Mixed metal ferrite (Mn0.6Zn0.4Fe2O4) intercalated g-C3N4 nanocomposite: efficient sunlight driven photocatalyst for methylene blue degradation. Nanotechnology 32, 505714 (2021)

    Article  CAS  Google Scholar 

  199. Dutta, V., Sharma, S., Raizada, P., et al.: Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J. Saudi Chem. Soc. 23, 1119–1136 (2019)

    Article  Google Scholar 

  200. Raizada, P., Kumari, J., Shandilya, P., et al.: Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO4. Desalination 79, 204–213 (2017)

    CAS  Google Scholar 

  201. Philippopoulos, C., Nikolaki, M.: Photocatalytic processes on the oxidation of organic compounds in water. In: Šramová, B. (ed.) New Trends in Technologies. IntechOpen (2010)

  202. Saravanan, R., Gracia, F., Stephen, A.: Basic principles, mechanism, and challenges of photocatalysis. In: Khan, M.M., Pradhan, D., Sohn, Y. (eds.) Nanocomposites for Visible Light-Induced Photocatalysis, pp. 19–40. Springer, Cham (2017)

    Chapter  Google Scholar 

  203. Serpone, N.: Emeline, A, semiconductor photocatalysis—past, present, and future outlook. J. Phys. Chem. Lett. 3, 673–677 (2012)

    Article  CAS  PubMed  Google Scholar 

  204. Riboni, F., Bettini, L.G., Bahnemann, D.W., et al.: WO3–TiO2 vs. TiO2 photocatalysts: effect of the W precursor and amount on the photocatalytic activity of mixed oxides. Cat. Today 209, 28–34 (2013)

    Article  CAS  Google Scholar 

  205. Anwer, H., Mahmood, A., Lee, J., et al.: Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 12, 955–972 (2019)

    Article  CAS  Google Scholar 

  206. Cong, S., Geng, F., Zhao, Z.: Tungsten oxide materials for optoelectronic applications. Adv. Mater. 28, 10518–10528 (2016)

    Article  CAS  PubMed  Google Scholar 

  207. Thangavel, S., Elayaperumal, M., Venugopal, G.: Synthesis and properties of tungsten oxide and reduced graphene oxide nanocomposites. Mater. Express. 2, 327–334 (2012)

    Article  CAS  Google Scholar 

  208. Chai, B., Li, J., Xu, Q., et al.: Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Mater. Lett. 120, 177–181 (2014)

    Article  CAS  Google Scholar 

  209. Peiris, C., Gunatilake, S.R., Mlsna, T.E., et al.: Biochar-based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: a critical review. Bioresour. Technol. 246, 150–159 (2017)

    Article  CAS  PubMed  Google Scholar 

  210. Ahmed, M.B., Zhou, J.L., Ngo, H.H., et al.: Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532, 112–126 (2015)

    Article  CAS  PubMed  Google Scholar 

  211. Zhu, W., Sun, F., Goei, R., et al.: Facile fabrication of RGO/WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Appl. Catal. B. 207, 93–102 (2017)

    Article  CAS  Google Scholar 

  212. Jiang, G., Lin, Z., Chen, C., et al.: TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011)

    Article  CAS  Google Scholar 

  213. Kasap, H., Godin, R., Jeay-Bizot, C., et al.: Interfacial engineering of a carbon nitride-graphene oxide–molecular Ni catalyst hybrid for enhanced photocatalytic activity. ACS Catal. 8, 6914–6926 (2018)

    Article  CAS  Google Scholar 

  214. Sajjad, S., Khan, M., Leghari, S.A.K., et al.: Potential visible WO3/GO composite photocatalyst. Int. J. Appl. Ceram. Technol. 16, 1218–1227 (2019)

    Article  CAS  Google Scholar 

  215. Ke, J., Zhou, H., Liu, J., et al.: Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets. J. Colloid Interface Sci. 555, 413–422 (2019)

    Article  CAS  PubMed  Google Scholar 

  216. Wang, Z., Lei, Q., Wang, Z., et al.: In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation. Chem. Eng. Sci. 395, 125180 (2020)

    Article  CAS  Google Scholar 

  217. Qin, J., Cao, M., Li, N., et al.: Graphene-wrapped WO3 nanoparticles with improved performances in electrical conductivity and gas sensing properties. J. Mater. Chem. 21, 17167–17174 (2011)

    Article  CAS  Google Scholar 

  218. Chen, D., Zhang, H., Liu, Y., et al.: Graphene and its derivatives for the development of solar cells, photoelectrochemical, and photocatalytic applications. Energy Environ. Sci. 6, 1362–1387 (2013)

    Article  CAS  Google Scholar 

  219. Park, S., Hong, T., Jung, J., et al.: Room temperature hydrogen sensing of multiple networked ZnO/WO3 core–shell nanowire sensors under UV illumination. Curr Appl Phys. 14, 1171–1175 (2014)

    Article  Google Scholar 

  220. Sajjad, A.K.L., Sajjad, S., Iqbal, A.: ZnO/WO3 nanostructure as an efficient visible light catalyst. Ceram. Int. 44, 9364–9371 (2018)

    Article  CAS  Google Scholar 

  221. Luo, X., Deng, F., Min, L., et al.: Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ. Sci. Technol. 47, 7404–7412 (2013)

    Article  CAS  PubMed  Google Scholar 

  222. Song, X.C., Wang, X., Zheng, Y.F., et al.: Electrochromic Properties of WO3-MoO3 nanocomposite films prepared by electrodeposition method. Curr. Nanosci. 9, 330–334 (2013)

    Article  CAS  Google Scholar 

  223. Vallejos, S., Gracia, I., Figueras, E., et al.: Nanoscale heterostructures-based on Fe2O3@WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Appl. Mater. Interfaces. 7, 18638–18649 (2015)

    Article  CAS  PubMed  Google Scholar 

  224. Bai, S., Zhang, K., Sun, J., et al.: Surface decoration of WO3 architectures with Fe2O3 nanoparticles for visible-light-driven photocatalysis. Cryst. Eng. Comm. 16, 3289–3295 (2014)

    Article  CAS  Google Scholar 

  225. Gesheva, K., Arvizu, M.A., Bodurov, G., et al.: Optical, structural and electrochromic properties of sputter-deposited W–Mo oxide thin films. J. Phys. 764, 012010 (2016)

    Google Scholar 

  226. Su, P.-G., Peng, Y.-T.: Fabrication of a room-temperature H2S gas sensor-based on PPy/WO3 nanocomposite films by in-situ photopolymerization. Sens. Actuators B Chem. 193, 637–643 (2014)

    Article  CAS  Google Scholar 

  227. Mane, A., Navale, S., Patil, V.: Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor. Org. Electron. 19, 15–25 (2015)

    Article  CAS  Google Scholar 

  228. Inomata, H., Shimokawabe, M., Kuwana, A., et al.: Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: influence of preparation variables on the catalytic performance. Appl. Catal. B. 84, 783–789 (2008)

    Article  CAS  Google Scholar 

  229. Zhou, P., Xu, Q., Li, H., et al.: Fabrication of two-dimensional lateral heterostructures of WS2/WO3·H2O through selective oxidation of monolayer WS2. Angew. Chem. 127, 15441–15445 (2015)

    Article  Google Scholar 

  230. Shang, X., Rao, Y., Lu, S.-S., et al.: Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 197, 123–128 (2017)

    Article  CAS  Google Scholar 

  231. Negreiros, F.R., Pedroza, L.S., Souza, F.L., et al.: Surface Fe vacancy defects on haematite and their role in light-induced water splitting in artificial photosynthesis. Phys. Chem. Chem. Phys. 19, 31410–31417 (2017)

    Article  CAS  PubMed  Google Scholar 

  232. Zhang, X., Li, H., Wang, S., et al.: Improvement of hematite as photocatalyst by doping with tantalum. J. Phys. Chem. C. 118, 16842–16850 (2014)

    Article  CAS  Google Scholar 

  233. Sugrañez, R., Balbuena, J., Cruz-Yusta, M., et al.: Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases. Appl. Catal. B. 165, 529–536 (2015)

    Article  Google Scholar 

  234. Xie, J., Zhou, Z., Lian, Y., et al.: Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram. Int. 41, 2622–2625 (2015)

    Article  CAS  Google Scholar 

  235. Dozzi, M.V., Marzorati, S., Longhi, M., et al.: Photocatalytic activity of TiO2–WO3 mixed oxides in relation to electron transfer efficiency. Appl. Catal. B. 186, 157–165 (2016)

    Article  CAS  Google Scholar 

  236. Patrocinio, A.O.T., Paula, L.F., Paniago, R.M., et al.: Layer-by-layer TiO2/WO3 thin films as efficient photocatalytic self-cleaning surfaces. ACS Appl. Mater. Interfaces. 6, 16859–16866 (2014)

    Article  CAS  PubMed  Google Scholar 

  237. Pérez-González, M., Tomás, S., Morales-Luna, M., et al.: Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process. Thin Solid Films 594, 304–309 (2015)

    Article  Google Scholar 

  238. Hernández, S., Hidalgo, D., Sacco, A., et al.: Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. 17, 7775–7786 (2015)

    Google Scholar 

  239. Park, S., Lee, K.-S., Bozoklu, G., et al.: Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)

    Article  CAS  PubMed  Google Scholar 

  240. An, D., Yang, L., Wang, T.-J., et al.: Separation performance of graphene oxide membrane in aqueous solution. Ind. Eng. Chem. Res. 55, 4803–4810 (2016)

    Article  CAS  Google Scholar 

  241. Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł, et al.: Graphene oxide-TiO2 and reduced graphene oxide-TiO2 nanocomposites: insight in charge-carrier lifetime measurements. Catal. Today. 287, 189–195 (2017)

    Article  CAS  Google Scholar 

  242. Hao, X., Li, M., Zhang, L., et al.: Photocatalyst TiO2/WO3/GO nano-composite with high efficient photocatalytic performance for BPA degradation under visible light and solar light illumination. J Ind Eng Chem. 55, 140–148 (2017)

    Article  CAS  Google Scholar 

  243. Yashni, G., Al-Gheethi, A., Mohamed, R., et al.: Reusability performance of green zinc oxide nanoparticles for photocatalysis of bathroom greywater. Water Pract. Technol. 16, 364–376 (2021)

    Article  Google Scholar 

  244. Hasannia, S., Kazemeini, M., Seif, A., et al.: Oxidative desulfurization of a model liquid fuel over an rGO-supported transition metal modified WO3 catalyst: experimental and theoretical studies. Sep. Purif. Technol. 269, 118729 (2021)

    Article  CAS  Google Scholar 

  245. Govindaraj, T., Mahendran, C., Manikandan, V., et al.: Fabrication of WO3 nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of Ciprofloxacin and Rhodamine B in an ecosystem. J. Alloys Compd. 868, 159091 (2021)

    Article  CAS  Google Scholar 

  246. Dong, Z., Wu, Y., Thirugnanam, N., et al.: Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production. Appl. Surf. Sci. 430, 293–300 (2018)

    Article  CAS  Google Scholar 

  247. Patial, S., Raizada, P., Hasija, V., et al.: Recent advances in photocatalytic multivariate metal organic frameworks-based nanostructures toward renewable energy and the removal of environmental pollutants. Mater. Today Energy. 19, 100589 (2021)

    Article  CAS  Google Scholar 

  248. Mohamed, H.H.: Rationally designed Fe2O3/GO/WO3 Z-scheme photocatalyst for enhanced solar light photocatalytic water remediation. J. Photochem. Photobiol. A. 378, 74–84 (2019)

    Article  CAS  Google Scholar 

  249. Sikong, L., Choopoo, P., Kooptarnond, K.: The photochromic properties of reduced graphene oxide doped tungsten/molybdenum trioxide nano-composites. Dig. J. Nanomater. Biostruct. 11, 821–831 (2016)

    Google Scholar 

  250. Chaudhary, K., Shaheen, N., Zulfiqar, S., et al.: Binary WO3–ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 269, 116526 (2020)

    Article  CAS  Google Scholar 

  251. Patial, S., Raizada, P., Hasija, V., et al.: Recent advances in photocatalytic multivariate metal organic framework (MOFs)-based nanostructures toward renewable energy and the removal of environmental pollutants. Mater. Today Energy. 19, 100589 (2020)

    Article  Google Scholar 

  252. Fakhri, H., Bagheri, H.: Highly efficient Zr-MOF@WO3/graphene oxide photocatalyst: synthesis, characterization and photodegradation of tetracycline and malathion. Mater. Sci. Semicond. Process. 107, 104815 (2020)

    Article  CAS  Google Scholar 

  253. Zhang, X., Bian, X., Xu, H., et al.: Fabrication of WO3/RGO/Ni: FeOOH heterostructure for synergistically enhancing photoelectrochemical water oxidation. Appl. Surf. Sci. 542, 148579 (2021)

    Article  CAS  Google Scholar 

  254. Tang, X.-Z., Cao, Z., Zhang, H.-B., et al.: Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chem. Comm. 47, 3084–3086 (2011)

    Article  CAS  PubMed  Google Scholar 

  255. Kamali, K.Z., Pandikumar, A., Jayabal, S., et al.: Amalgamation-based optical and colorimetric sensing of mercury (II) ions with silver@graphene oxide nanocomposite materials. Microchim. Acta. 183, 369–377 (2016)

    Article  Google Scholar 

  256. Tran, V.A., Nguyen, T.P., Kim, I.-T., et al.: Excellent photocatalytic activity of ternary Ag@WO3@rGO nanocomposites under solar simulation irradiation. J. Sci: Adv Mater Dev. 6, 108–117 (2021)

    CAS  Google Scholar 

  257. Huang, B., Ma, Y., Xiong, Z., et al.: Polyoxometalate-derived Ir/WOx/rGO nanocomposites for enhanced electrocatalytic water splitting. Energy Environ. Mater. 4, 681–686 (2021)

    Article  CAS  Google Scholar 

  258. Gao, J., Ma, Y., Li, J., et al.: Free-standing WS 2-MWCNTs hybrid paper integrated with polyaniline for high-performance flexible supercapacitor. J Nanopart Res. 20, 298 (2018)

    Article  Google Scholar 

  259. Yang, Z., Zhang, H., Ma, B., et al.: Facile synthesis of reduced graphene oxide/tungsten disulfide/tungsten oxide nanohybrids for high performance supercapacitor with excellent rate capability. Appl. Surf. Sci. 463, 150–158 (2019)

    Article  CAS  Google Scholar 

  260. Naz, R., Liu, Q., Abbas, W., et al.: One-pot hydrothermal synthesis of ternary 1T-MoS2/hexa/WO3/graphene composites for high-performance supercapacitors. Chem. Eur. J. 25, 16054–16062 (2019)

    Article  CAS  PubMed  Google Scholar 

  261. Zhu, H., An, Y., Shi, M., et al.: Porous N-doped carbon/MnO2 nanoneedles for high performance ionic liquid-based supercapacitors. Mater. Lett. 296, 129837 (2021)

    Article  CAS  Google Scholar 

  262. Jabed, M.A., Zhao, J., Kilin, D., et al.: Understanding of light absorption properties of the N-doped graphene oxide quantum dot with TD-DFT. J. Phys. Chem. C. 125, 14979–14990 (2021)

    Article  CAS  Google Scholar 

  263. Hasija, V., Sudhaik, A., Raizada, P., et al.: Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol. J. Environ. Chem. Eng. 7, 103272 (2019)

    Article  CAS  Google Scholar 

  264. Wei, J., Wang, H., Zhang, Q., et al.: One-pot hydrothermal synthesis of N-doped carbon quantum dots using the waste of shrimp for hydrogen evolution from formic acid. Chem. Lett. 44, 241–243 (2015)

    Article  CAS  Google Scholar 

  265. Arabatzis, I., Stergiopoulos, T., Bernard, M., et al.: Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B. 42, 187–201 (2003)

    Article  CAS  Google Scholar 

  266. Jamila, G.S., Sajjad, S., Leghari, S.A.K., et al.: Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photo catalyst. J. Hazard. Mater. 382, 121087 (2020)

    Article  CAS  PubMed  Google Scholar 

  267. Gupta, V., Miura, N.: Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim. Acta. 52, 1721–1726 (2006)

    Article  CAS  Google Scholar 

  268. Khan, A., Khan, A.A.P., Rahman, M.M., et al.: Preparation of polyaniline grafted graphene oxide–WO3 nanocomposite and its application as a chromium(III) chemi-sensor. RSC Adv. 5, 105169–105178 (2015)

    Article  CAS  Google Scholar 

  269. Malefane, M.E., Ntsendwana, B., Mafa, P.J., et al.: In-situ synthesis of tetraphenylporphyrin/tungsten(VI) oxide/reduced graphene oxide (TPP/WO3/RGO) nanocomposite for visible light photocatalytic degradation of acid blue 25. ChemistrySelect 4, 8379–8389 (2019)

    Article  CAS  Google Scholar 

  270. Raizada, P., Sudhaik, A., Singh, P., et al.: Converting type II AgBr/VO into ternary Z scheme photocatalyst via coupling with phosphorus doped g-C3N4 for enhanced photocatalytic activity. Sep. Purif. Technol. 227, 115692 (2019)

    Article  CAS  Google Scholar 

  271. Lu, N., Wang, P., Su, Y., et al.: Construction of Z-scheme g-C3N4/RGO/WO3 with in situ photoreduced graphene oxide as electron mediator for efficient photocatalytic degradation of ciprofloxacin. Chemosphere 215, 444–453 (2019)

    Article  CAS  PubMed  Google Scholar 

  272. Choobtashani, M., Akhavan, O.: Visible light-induced photocatalytic reduction of graphene oxide by tungsten oxide thin films. Appl Surf Sci. 276, 628–634 (2013)

    Article  CAS  Google Scholar 

  273. Khan, M.E., Khan, M.M., Cho, M.H.: Fabrication of WO3 nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Adv. 6, 20824–20833 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zahid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisa, MU., Nadeem, N., Yaseen, M. et al. Applications of graphene-based tungsten oxide nanocomposites: a review. J Nanostruct Chem 13, 167–196 (2023). https://doi.org/10.1007/s40097-021-00464-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00464-z

Keywords

Navigation