Skip to main content
Log in

Metal–polymer-coordinated complexes as potential nanovehicles for drug delivery

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Hybrid metal–polymer-coordinated complex, as a class of supramolecular coordinated complex, represents a great opportunity for the development of the multipurpose intelligent system of nanomedicine in drug delivery. These structures and their interesting functions are created after the self-assembly process and coordination bond formation between different metal ions and polymers. There is an important difference between metal–organic framework (MOF) and metal–polymer-coordinated complex (MPC). MPCs are convergent structures made of metal and polymeric linkers’ combination in 1D, 2D and 3D architectures while MOFs are divergent 3D network structures with metal cores and organic ligands linkers. Until now, many reviews have been published about MOF-based systems while there is no comprehensive review on MPCs. Moreover, the MPCs have exhibited potential nano-chemistry properties to be utilized in nanomedicine applications as smart and multifunction nanovesicles for drug delivery. In this review, the MPC architectures, their synthesis process and their applications in drug delivery are described. The advantages and disadvantages of MPC are summarized. We also categorized smart MPCs for on-demand drug release and intelligent delivery.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2
Fig. 3

Reproduced from [18] with permission from John Wiley and Sons, Copyright © 2018 and b X-ray crystallography for double helicate chemical structure. Reproduced from [20] with permission, Copyright © 2018

Fig. 4

Reproduced from [29] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2010

Fig. 5

Reproduced from [31] with permission from John Wiley and Sons, Copyright © 2012

Fig. 6
Fig. 7

Reproduced from [46] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2020

Fig. 8

reproduced from [47] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2020

Fig. 9

Copyright © 2017

Fig. 10

Reproduced from [57] with permission from American Chemical Society, Copyright © 2012

Fig. 11

Reproduced from [58] with permission from John Wiley and Sons, Copyright © 2018

Fig. 12

Reproduced from [65] with permission from Elsevier, Copyright © 2016

Fig. 13

Reproduced from [68] with permission from Royal Society of Chemistry (Great Britain) Copyright © 2012

Fig. 14

Reproduced from [9] with permission from Royal Society of Chemistry (Great Britain) Copyright © 2020

Fig. 15

Reproduced from [74] with permission from John Wiley and Sons, Copyright © 2011 and b metal-cage structure of MPC. Reproduced from [75] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2010

Fig. 16

Reproduced from [78] with permission from John Wiley and Sons, Copyright © 2015

Fig. 17
Fig. 18

Reproduced from [81] with permission from Elsevier, Copyright © 2016

Fig. 19

Reproduced from [69] with permission from Elsevier Copyright © 2017

Fig. 20

Reproduced from [67] with permission from Elsevier, Copyright © 2018

Fig. 21

Reproduced from [88] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2016 and b temperature-responsiveness of Eu-based polymer complex. Reproduced from [103] with permission from Royal Society of Chemistry (Great Britain), Copyright © 2013

Fig. 22

Copyright © 2020

Similar content being viewed by others

References

  1. Wei, Z., et al.: Metals in polymers: hybridization enables new functions. J. Mater. Chem. 8(45), 15956–15980 (2020)

    CAS  Google Scholar 

  2. Clarke, M.J.: Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 236(1–2), 209–233 (2003)

    Article  CAS  Google Scholar 

  3. Zhang, D., Peng, F., Liu, X.: Protection of magnesium alloys: from physical barrier coating to smart self-healing coating. J. Alloys Compd. 853, 157010 (2021)

    Article  CAS  Google Scholar 

  4. Callari, M., et al.: Polymers with platinum drugs and other macromolecular metal complexes for cancer treatment. Prog. Polym. Sci. 39(9), 1614–1643 (2014)

    Article  CAS  Google Scholar 

  5. Cai, H., et al.: A nanostrategy for efficient imaging-guided antitumor therapy through a stimuli-responsive branched polymeric prodrug. Adv. Sci. (Weinh). 7(6), 1903243 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Batten, S.R., et al.: Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm 14(9), 3001 (2012)

    Article  CAS  Google Scholar 

  7. Biradha, K., Ramanan, A., Vittal, J.J.: Coordination polymers versus metal−organic frameworks. Cryst. Growth Des. 9(7), 2969–2970 (2009)

    Article  CAS  Google Scholar 

  8. Casini, A., Woods, B., Wenzel, M.: The promise of self-assembled 3D supramolecular coordination complexes for biomedical applications. Inorg. Chem. 56(24), 14715–14729 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. Tu, L., et al.: Self-recognizing and stimulus-responsive carrier-free metal-coordinated nanotheranostics for magnetic resonance/photoacoustic/fluorescence imaging-guided synergistic photo-chemotherapy. J Mater Chem B. 8(26), 5667–5681 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, P., et al.: Supramolecular self-assembly of nucleotide–metal coordination complexes: from simple molecules to nanomaterials. Coord. Chem. Rev. 292, 107–143 (2015)

    Article  CAS  Google Scholar 

  11. Thakur, N., et al.: Multifunctional inosine monophosphate coordinated metal-organic hydrogel: multistimuli responsiveness, self-healing properties, and separation of water from organic solvents. ACS Sustain Chem Eng. 6(7), 8659–8671 (2018)

    Article  CAS  Google Scholar 

  12. Ezzayani, K., et al.: Building-up novel coordination polymer with magnesium porphyrin: Synthesis, molecular structure, photophysical properties and spectroscopic characterization. Potential application as antibacterial agent. Inorganica Chim. Acta. 514, 119960 (2021)

    Article  CAS  Google Scholar 

  13. Wang, Z., et al.: Organelle-specific triggered release of immunostimulatory oligonucleotides from intrinsically coordinated DNA–metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc. 139(44), 15784–15791 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Jańczewski, D., et al.: Organometallic polymeric carriers for redox triggered release of molecular payloads. J. Mater. Chem. 22(13), 6429 (2012)

    Article  Google Scholar 

  15. Duangjai, A., et al.: Combination cytotoxicity of backbone degradable HPMA copolymer gemcitabine and platinum conjugates toward human ovarian carcinoma cells. Eur. J. Pharm. Biopharm. 87(1), 187–196 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Cai, H., et al.: Cathepsin B-responsive and gadolinium-labeled branched glycopolymer-PTX conjugate-derived nanotheranostics for cancer treatment. Acta. Pharm. Sin. B. 11(2), 544–559 (2021)

    Article  CAS  PubMed  Google Scholar 

  17. Anderegg, G., et al.: Critical evaluation of stability constants of metal complexes of complexones for biomedical and environmental applications* (IUPAC Technical Report). Pure Appl. Chem. 77(8), 1445–1495 (2005)

    Article  CAS  Google Scholar 

  18. Wang, J., et al.: Acid-triggered synergistic chemo-photodynamic therapy systems based on metal-coordinated supramolecular interaction. J Biomed Mater Res A. 106(11), 2955–2962 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. Ezzayani, K., et al.: Complex of hexamethylenetetramine with magnesium-tetraphenylporphyrin: synthesis, structure, spectroscopic characterizations and electrochemical properties. J. Mol. Struct. 1137, 412–418 (2017)

    Article  CAS  Google Scholar 

  20. Matsuoka, R., Nabeshima, T.: Functional supramolecular architectures of dipyrrin complexes. Front Chem. 6, 349 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  21. MacLachlan, M.J., et al.: Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287(5457), 1460–1463 (2000)

    Article  CAS  PubMed  Google Scholar 

  22. Driva, P., et al.: Complexes of end-functionalized polystyrenes carrying amine end-group with transition metals: association effects in organic solvents. Biointerface Res. Appl. Chem. 10(1), 4764–4773 (2020)

    CAS  Google Scholar 

  23. Liu, J., et al.: Light-controlled drug release from singlet-oxygen sensitive nanoscale coordination polymers enabling cancer combination therapy. Biomaterials 146, 40–48 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Li, B., et al.: Five lead(II) coordinated polymers assembled from asymmetric azoles carboxylate ligands: Synthesis, structures and fluorescence properties. Inorganica Chim. Acta. 514, 120035 (2021)

    Article  CAS  Google Scholar 

  25. Solorzano, R., et al.: Versatile iron-catechol-based nanoscale coordination polymers with antiretroviral ligand functionalization and their use as efficient carriers in HIV/AIDS therapy. Biomater Sci. 7(1), 178–186 (2018)

    Article  PubMed  Google Scholar 

  26. Yan, Y., et al.: Redox responsive molecular assemblies based on metallic coordination polymers. Soft Matter 6(14), 3244 (2010)

    Article  CAS  Google Scholar 

  27. Ovsyannikov, A., et al.: Coordination polymers based on calixarene derivatives: structures and properties. Coord. Chem. Rev. 352, 151–186 (2017)

    Article  CAS  Google Scholar 

  28. Cook, T.R., Stang, P.J.: Coordination-driven supramolecular macromolecules via the directional bonding approach, In Hierarchical macromolecular structures: 60 years after the Staudinger Nobel Prize I. Advances in Polymer Science, vol. 261, pp. 229–248. Springer, Cham (2013)

  29. Lewis, J.E.M., et al.: Stimuli-responsive Pd2L4metallosupramolecular cages: towards targeted cisplatin drug delivery. Chem. Sci. 3(3), 778–784 (2012)

    Article  CAS  Google Scholar 

  30. Yoshizawa, M., Tamura, M., Fujita, M.: Diels-alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312(5771), 251–254 (2006)

    Article  CAS  PubMed  Google Scholar 

  31. Bunzen, J., et al.: Self-assembly of M24L48 polyhedra based on empirical prediction. Angew. Chem. Int. Ed. 51(13), 3161–3163 (2012)

    Article  CAS  Google Scholar 

  32. Han, J., et al.: Bioconjugation strategies to couple supramolecular exo-functionalized palladium cages to peptides for biomedical applications. Chem. Commun. (Camb) 53(8), 1405–1408 (2017)

    Article  CAS  Google Scholar 

  33. Lee, Y.H., He, L., Chan, Y.T.: Stimuli-responsive supramolecular gels constructed by hierarchical self-assembly based on metal-ligand coordination and host–guest recognition. Macromol. Rapid Commun. 39(22), e1800465 (2018)

    Article  PubMed  Google Scholar 

  34. Datta, S., Saha, M.L., Stang, P.J.: Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 51(9), 2047–2063 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei, Z., et al.: Metals in polymers: hybridization enables new functions. J. Mater. Chem. C. 8(45), 15956–15980 (2020)

    Article  CAS  Google Scholar 

  36. Mbaba, M., Golding, T.M., Smith, G.S.: Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules 25(22), 5276 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  37. Amiri, N., et al.: Synthesis, molecular structure, photophysical properties and spectroscopic characterization of new 1D-magnesium(II) porphyrin-based coordination polymer. Res. Chem. Intermed. 44(9), 5583–5595 (2018)

    Article  CAS  Google Scholar 

  38. Li, J., et al.: Twelve cadmium(II) coordination frameworks with asymmetric pyridinyl triazole carboxylate: syntheses, structures, and fluorescence properties. Cryst. Growth Des. 19(7), 3785–3806 (2019)

    Article  CAS  Google Scholar 

  39. Pitto-Barry, A., et al.: Encapsulation of pyrene-functionalized poly(benzyl ether) dendrons into a water-soluble organometallic cage. Chem Asian J. 6(6), 1595–1603 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. Mao, J., et al.: A zipped-up tunable metal coordinated cationic polymer for nanomedicine. J Mater Chem B. 8(7), 1350–1358 (2020)

    Article  CAS  PubMed  Google Scholar 

  41. Qi, X., et al.: Cationic Salecan-based hydrogels for release of 5-fluorouracil. RSC Adv. 7(24), 14337–14347 (2017)

    Article  CAS  Google Scholar 

  42. Qi, X., et al.: Development of novel hydrogels based on Salecan and poly(N-isopropylacrylamide-co-methacrylic acid) for controlled doxorubicin release. RSC Adv. 6(74), 69869–69881 (2016)

    Article  CAS  Google Scholar 

  43. Wei, W., et al.: Smart macroporous salecan/poly(N, N-diethylacrylamide) semi-IPN hydrogel for anti-inflammatory drug delivery. ACS Biomater. Sci. Eng. 2(8), 1386–1394 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Su, T., et al.: Facile fabrication of functional hydrogels consisting of pullulan and polydopamine fibers for drug delivery. Int. J. Biol. Macromol. 163, 366–374 (2020)

    Article  CAS  PubMed  Google Scholar 

  45. Yan, K., et al.: A multifunctional metal-biopolymer coordinated double network hydrogel combined with multi-stimulus responsiveness, self-healing, shape memory and antibacterial properties. Biomater Sci. 8(11), 3193–3201 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. Kniazeva, M.V., et al.: Nuclearity control in calix[4]arene-based zinc(ii) coordination complexes. CrystEngComm 22(44), 7693–7703 (2020)

    Article  CAS  Google Scholar 

  47. Dutta, D., et al.: Oxalato bridged coordination polymer of manganese(iii) involving unconventional O⋯π-hole(nitrile) and antiparallel nitrile⋯nitrile contacts: antiproliferative evaluation and theoretical studies. New J. Chem. 44(46), 20021–20038 (2020)

    Article  CAS  Google Scholar 

  48. Amiri, N., et al.: Synthesis, crystal structure and spectroscopic characterizations of porphyrin-based Mg(II) complexes—potential application as antibacterial agent. Tetrahedron 73(50), 7011–7016 (2017)

    Article  CAS  Google Scholar 

  49. Li, Q.-F., et al.: Lanthanide-based hydrogels with adjustable luminescent properties synthesized by thiol-Michael addition. Dyes Pigm. 174, 108091 (2020)

    Article  CAS  Google Scholar 

  50. Weng, G., Thanneeru, S., He, J.: Dynamic coordination of Eu–Iminodiacetate to control fluorochromic response of polymer hydrogels to multistimuli. Adv Mater. 30(11), 1706526 (2018)

    Article  Google Scholar 

  51. Ma, D., et al.: Synthesis, characterization, and magnetic properties of two transition metal coordination polymers based on 2,5-furandicarboxylic acid and N-donor ligands. Inorg Organomet Polym Mater. 26(5), 1053–1060 (2016)

    Article  CAS  Google Scholar 

  52. Dawn, S., et al.: A trinuclear silver coordination polymer from a bipyridine bis-urea macrocyclic ligand and silver triflate. Inorg. Chem. Commun. 15, 88–92 (2012)

    Article  CAS  Google Scholar 

  53. Dulcevscaia, G.M., et al.: New copper(II) complexes with isoconazole: Synthesis, structures and biological properties. Polyhedron 52, 106–114 (2013)

    Article  CAS  Google Scholar 

  54. Lopez, A., Liu, J.: Light-activated metal-coordinated supramolecular complexes with charge-directed self-assembly. J. Phys. Chem. C. 117(7), 3653–3661 (2013)

    Article  CAS  Google Scholar 

  55. Đurić, S., et al.: New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: the key role of the nature of donor coordinated to the metal center. J. Inorg. Biochem. 203, 110872 (2020)

    Article  PubMed  Google Scholar 

  56. Hu, C., et al.: Dual-physical cross-linked tough and photoluminescent hydrogels with good biocompatibility and antibacterial activity. Macromol. Rapid. Commun. 38(10), 1600788 (2017)

    Article  Google Scholar 

  57. Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113(1), 734–777 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Z., et al.: A facile strategy for self-healing polyurethanes containing multiple metal–ligand bonds. Macromol Rapid Commun. 39(6), e1700678 (2018)

    Article  PubMed  Google Scholar 

  59. Wei, Z., et al.: Adaptable Eu-containing polymeric films with dynamic control of mechanical properties in response to moisture. Soft Matter 16(9), 2276–2284 (2020)

    Article  CAS  PubMed  Google Scholar 

  60. Liu, W., et al.: C-coordinated O-carboxymethyl chitosan metal complexes: Synthesis, characterization and antifungal efficacy. Int. J. Biol. Macromol. 106, 68–77 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. Nie, Z., et al.: Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6(8), 609–614 (2007)

    Article  CAS  PubMed  Google Scholar 

  62. Gao, B., Rozin, M.J., Tao, A.R.: Plasmonic nanocomposites: Polymer-guided strategies for assembling metal nanoparticles. Nanoscale 5(13), 5677–5691 (2013)

    Article  CAS  PubMed  Google Scholar 

  63. Tandon, S.S., et al.: Self-assembly of antiferromagnetically-coupled copper(II) supramolecular architectures with diverse structural complexities. Molecules 25(23), 5549 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  64. Carnes, M.E., Collins, M.S., Johnson, D.W.: Transmetalation of self-assembled, supramolecular complexes. Chem. Soc. Rev. 43(6), 1825–1834 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Abolmaali, S.S., et al.: Chemically crosslinked nanogels of PEGylated poly ethyleneimine (l-histidine substituted) synthesized via metal ion coordinated self-assembly for delivery of methotrexate: Cytocompatibility, cellular delivery and antitumor activity in resistant cells. Mater. Sci. Eng. C. 62, 897–907 (2016)

    Article  CAS  Google Scholar 

  66. Li, J., Li, J.: A luminescent porous metal–organic framework with Lewis basic pyridyl sites as a fluorescent chemosensor for TNP detection. Inorg. Chem. Commun. 89, 51–54 (2018)

    Article  CAS  Google Scholar 

  67. Zhang, C., et al.: A multifunctional ternary Cu(II)-carboxylate coordination polymeric nanocomplex for cancer thermochemotherapy. Int. J. Pharm. 549(1–2), 1–12 (2018)

    CAS  PubMed  Google Scholar 

  68. Cao, W., et al.: Coordination-responsive selenium-containing polymer micelles for controlled drug release. Chem. Sci. 3(12), 3403 (2012)

    Article  CAS  Google Scholar 

  69. Beck, J.B., Rowan, S.J.: Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 125(46), 13922–13923 (2003)

    Article  CAS  PubMed  Google Scholar 

  70. Hoke, G.D., et al.: In vivo and in vitro cardiotoxicity of a gold-containing antineoplastic drug candidate in the rabbit. Toxicol. Appl. Pharmacol. 100(2), 293–306 (1989)

    Article  CAS  PubMed  Google Scholar 

  71. Tiekink, E.R.T.: Gold derivatives for the treatment of cancer. Crit. Rev. Oncol./ Hematol. 42(3), 225–248 (2002)

    Article  Google Scholar 

  72. To, Y.F., et al.: Gold(III) porphyrin complex is more potent than cisplatin in inhibiting growth of nasopharyngeal carcinoma in vitro and in vivo. Int J Cancer. 124(8), 1971–1979 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. Zava, O., et al.: Evidence for drug release from a metalla-cage delivery vector following cellular internalisation. Chem. 16(5), 1428–1431 (2010)

    Article  CAS  Google Scholar 

  74. Barry, N.P., et al.: Excellent correlation between drug release and portal size in metalla-cage drug-delivery systems. J. Chem. 17(35), 9669–9677 (2011)

    CAS  Google Scholar 

  75. Mattsson, J., et al.: Drug delivery of lipophilic pyrenyl derivatives by encapsulation in a water soluble metalla-cage. Dalton Trans. 39(35), 8248–8255 (2010)

    Article  CAS  PubMed  Google Scholar 

  76. Zheng, Y.R., et al.: Encapsulation of Pt(IV) prodrugs within a Pt(II) cage for drug delivery. Chem Sci. 6(2), 1189–1193 (2015)

    Article  CAS  PubMed  Google Scholar 

  77. Schmidt, A., et al.: Evaluation of new palladium cages as potential delivery systems for the anticancer drug cisplatin. Chem. 22(7), 2253–2256 (2016)

    Article  CAS  Google Scholar 

  78. Postupalenko, V., et al.: Protein delivery system containing a nickel-immobilized polymer for multimerization of affinity-purified his-tagged proteins enhances cytosolic transfer. Angew. Chem. Int. Ed Engl. 54(36), 10583–10586 (2015)

    Article  CAS  PubMed  Google Scholar 

  79. Fujita, D., et al.: Protein encapsulation within synthetic molecular hosts. Nat. Commun. 3, 1093 (2012)

    Article  PubMed  Google Scholar 

  80. Wang, N., et al.: Facile fabrication of a controlled polymer brush-type functional nanoprobe for highly sensitive determination of alpha fetoprotein. Anal Methods. 12(36), 4438–4446 (2020)

    Article  CAS  PubMed  Google Scholar 

  81. Wang, Y., et al.: Synthesis of PGMA/AuNPs amplification platform for the facile detection of tumor markers. Mater. Chem. Phys. 183, 534–541 (2016)

    Article  CAS  Google Scholar 

  82. Kumar, R.S., et al.: DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes. Eur. J. Med. Chem. 43(10), 2082–2091 (2008)

    Article  CAS  PubMed  Google Scholar 

  83. Badea, M., Uivarosi, V., Olar, R.: Improvement in the pharmacological profile of copper biological active complexes by their incorporation into organic or inorganic matrix. Molecules 25(24), 5830 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  84. Lum, C.T., et al.: A gold(III) porphyrin complex as an anti-cancer candidate to inhibit growth of cancer-stem cells. Chem. Commun (Camb) 49(39), 4364–4366 (2013)

    Article  CAS  Google Scholar 

  85. Zhang, J.-J., et al.: Organogold(III) supramolecular polymers for anticancer treatment. Angew. Chem. Int. Ed. 51(20), 4882–4886 (2012)

    Article  CAS  Google Scholar 

  86. Zhang, Q., et al.: A surface-grafted ligand functionalization strategy for coordinate binding of doxorubicin at surface of PEGylated mesoporous silica nanoparticles: toward pH-responsive drug delivery. Colloids Surf B Biointerfaces. 149, 138–145 (2017)

    Article  CAS  PubMed  Google Scholar 

  87. Shahin, M., Safaei-Nikouei, N., Lavasanifar, A.: Polymeric micelles for pH-responsive delivery of cisplatin. J Drug Target. 22(7), 629–637 (2014)

    Article  CAS  PubMed  Google Scholar 

  88. Song, Y., et al.: Temperature responsive polymer brushes grafted from graphene oxide: an efficient fluorescent sensing platform for 2,4,6-trinitrophenol. J. Mater. Chem C. 4(29), 7083–7092 (2016)

    Article  CAS  Google Scholar 

  89. Ren, Z., et al.: A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv Mater. 32(6), e1906024 (2020)

    Article  PubMed  Google Scholar 

  90. Ruan, L., et al.: Doxorubicin-metal coordinated micellar nanoparticles for intracellular codelivery and chemo/chemodynamic therapy in vitro. ACS Appl. Bio Mater. 2(11), 4703–4707 (2019)

    Article  CAS  Google Scholar 

  91. Hwang, G.H., et al.: pH-responsive robust polymer micelles with metal–ligand coordinated core cross-links. Chem. Commun. (Camb) 50(33), 4351–4353 (2014)

    Article  CAS  Google Scholar 

  92. Zhao, D., et al.: Surface functionalization of porous coordination nanocages via click chemistry and their application in drug delivery. Adv Mater. 23(1), 90–93 (2011)

    Article  CAS  PubMed  Google Scholar 

  93. Sun, R.W.-Y., Che, C.-M.: The anti-cancer properties of gold(III) compounds with dianionic porphyrin and tetradentate ligands. Coord. Chem. Rev. 253(11–12), 1682–1691 (2009)

    Article  CAS  Google Scholar 

  94. Che, C.-M., et al.: Gold(iii) porphyrins as a new class of anticancer drugs: cytotoxicity, DNA binding and induction of apoptosis in human cervix epitheloid cancer. Chem Comm 14, 1718 (2003)

    Article  Google Scholar 

  95. Sun, R.W., et al.: Stable anticancer gold(III)-porphyrin complexes: effects of porphyrin structure. Chem. 16(10), 3097–3113 (2010)

    Article  CAS  Google Scholar 

  96. Chow, K.H., et al.: A gold(III) porphyrin complex with antitumor properties targets the Wnt/beta-catenin pathway. Cancer. Res. 70(1), 329–337 (2010)

    Article  CAS  PubMed  Google Scholar 

  97. Tabasi, H., et al.: pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for Oxaliplatin loading and colon cancer treatment. Inorg. Chem. Commun. 125, 108430 (2021)

    Article  CAS  Google Scholar 

  98. Pan, D., et al.: PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 35(38), 10080–10092 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. Fricker, S.P.: Metal based drugs: from serendipity to design. Dalton Trans 43, 4903–4917 (2007)

    Article  Google Scholar 

  100. Xu, X., et al.: Photo-controlled release of metal ions using triazoline-containing amphiphilic copolymers. Polym. Chem. 10(26), 3585–3596 (2019)

    Article  CAS  Google Scholar 

  101. Ding, H., et al.: Synthesis and characterization of temperature-responsive copolymer of PELGA modified poly(N-isopropylacrylamide). Polymer 47(5), 1575–1583 (2006)

    Article  CAS  Google Scholar 

  102. Parikh, S.J., et al.: Evaluating glutamate and aspartate binding mechanisms to rutile (α-TiO2) via ATR-FTIR spectroscopy and quantum chemical calculations. Langmuir 27(5), 1778–1787 (2011)

    Article  CAS  PubMed  Google Scholar 

  103. Balamurugan, A., Reddy, M.L.P., Jayakannan, M.: π-Conjugated polymer–Eu3+complexes: versatile luminescent molecular probes for temperature sensing. J. Mater. Chem. A. 1(6), 2256–2266 (2013)

    Article  CAS  Google Scholar 

  104. Ding, Y., Kang, Y., Zhang, X.: Enzyme-responsive polymer assemblies constructed through covalent synthesis and supramolecular strategy. Chem. Commun. (Camb) 51(6), 996–1003 (2015)

    Article  CAS  Google Scholar 

  105. Chandrawati, R.: Enzyme-responsive polymer hydrogels for therapeutic delivery. Exp. Biol. Med. (Maywood) 241(9), 972–979 (2016)

    Article  CAS  Google Scholar 

  106. Nivorozhkin, A.L., et al.: Enzyme-activated Gd(3+) magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement. Angew. Chem. Int. Ed. Engl. 40(15), 2903–2906 (2001)

    Article  CAS  PubMed  Google Scholar 

  107. Garcia, F., et al.: Multi-responsive coordination polymers utilising metal-stabilised, dynamic covalent imine bonds. Chem. Commun. (Camb) 52(58), 9059–9062 (2016)

    Article  CAS  Google Scholar 

  108. Guan, X., et al.: Enzyme-responsive sulfatocyclodextrin/prodrug supramolecular assembly for controlled release of anti-cancer drug chlorambucil. Chem. Commun. (Camb) 55(7), 953–956 (2019)

    Article  CAS  Google Scholar 

  109. Villemin, E., et al.: Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nat. Rev. Chem. 3(4), 261–282 (2019)

    Article  CAS  Google Scholar 

  110. Feng, L., et al.: Structurally sophisticated octahedral metal complexes as highly selective protein kinase inhibitors. J. Am. Chem. Soc. 133(15), 5976–5986 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Courtois, J., et al.: Redox-responsive colloidal particles based on coordination polymers incorporating viologen units. Inorg. Chem. 59(9), 6100–6109 (2020)

    Article  CAS  PubMed  Google Scholar 

  112. Tao, B., Yin, Z.: Redox-responsive coordination polymers of dopamine-modified hyaluronic acid with copper and 6-mercaptopurine for targeted drug delivery and improvement of anticancer activity against cancer cells. Polymers (Basel). 12(5), 1132 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  113. Abdul-Hassan, W.S., et al.: Redox-triggered folding of self-assembled coordination polymers incorporating viologen units. Chem. 24(49), 12961–12969 (2018)

    Article  CAS  Google Scholar 

  114. Shen, S., et al.: Renal-clearable ultrasmall coordination polymer nanodots for chelator-free (64)Cu-labeling and imaging-guided enhanced radiotherapy of cancer. ACS Nano 11(9), 9103–9111 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the Mashhad University of Medical Sciences (980838).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ramezani or Mona Alibolandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabasi, H., Babaei, M., Abnous, K. et al. Metal–polymer-coordinated complexes as potential nanovehicles for drug delivery. J Nanostruct Chem 11, 501–526 (2021). https://doi.org/10.1007/s40097-021-00432-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00432-7

Keywords

Navigation