Skip to main content
Log in

Facile green preparation of nano-scale silver particles using Chenopodium botrys water extract for the removal of dyes from aqueous solution

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this study, the silver nanoparticles (AgNPs) as an eco-friendly, efficient and low-cost adsorbent was synthesized from Chenopodium botrys extract. Characteristics of the prepared adsorbent were investigated using scanning electron microscope (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDAX). According to the particle size distribution, the average size of AgNPs was obtained 11.9 nm. AgNPs were used for methyl blue (MB) and methyl orange (MO) removal from aqueous solution. Maximum removal percentages of 97.50 and 95.00 was obtained under optimum conditions, including contact time of 25 min, pH = 10, adsorbent dosage of 0.9 g, and dye concentration of 30 mg/L for MB and MO, respectively. Langmuir isotherm indicated the best results of adsorption related to the MB and MO with the maximum adsorption capacity of (qmax) 90.09 and 80 mg g−1 for MB and MO, respectively. The kinetics study showed that the results were fitted to the pseudo-second-order model with the coefficient of determination (R2) of 0.9984 and 0.9919 for MB and MO, respectively. The process of removal can be also by adsorption of dye molecule on the surface of Ag-NPs and also may be due to the removal of dye molecules by hydroxyl radicals generated by the NPs effect on water molecules in the presence of light. The proposed adsorbent with its great properties can be used to remove contaminants from industrial wastewater before discharge to the environment.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Perrotti, T.C., Freitas, N.S., Alzamora, M., Sanchez, D.R., Carvalho, N.M.F.: Green iron nanoparticles supported on amino-functionalized silica for removal of the dye methyl orange. J. Environ. Chem. Eng. 7, 103237 (2019)

    Article  CAS  Google Scholar 

  2. Ebrahimzadeh, M., Mortazavi-Derazkola, S., Zazouli, M.A.: Eco-friendly green synthesis of novel magnetic Fe3O4/SiO2/ZnO-Pr6O11 nanocomposites for photocatalytic degradation of organic pollutant. J. Rare Earths. 38, 13–20 (2020)

    Article  CAS  Google Scholar 

  3. Barak, A., Goel, Y., Kumar, R., Shukla, S.K.: Removal of methyl orange over TiO2/polyacrylamide hydrogel. Mater. Today: Proceedings. 12, 529–535 (2019)

    CAS  Google Scholar 

  4. Azam, K., Raza, R., Shezad, N., Shabir, M., Yang, W., Ahmad, N., Shafiq, I., Akhter, P., Razzaq, A., Hussain, M.: Development of recoverable magnetic mesoporous carbon adsorbent for removal of methyl blue and methyl orange from wastewater. J. Environ. Chem. Eng. 8, 104220 (2020)

    Article  CAS  Google Scholar 

  5. Altaf Nazir, M., Ahmad Khan, N., Cheng, C., Ahmad Shah, S.S., Najamd, T., Arshad, M., Sharif, A., Akhtar, S., Rehman, A.: Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Appl. Clay Sci. 190, 105564 (2020)

    Article  CAS  Google Scholar 

  6. Pirsaheb, M., Hossaini, H., Nasseri, S., Azizi, N., Shahmoradi, B., Khosravi, T.: Optimization of photocatalytic degradation of methyl orange using immobilized scoria-Ni/TiO2 nanoparticles. J Nanostructure Chem. 10, 143–159 (2020)

    Article  CAS  Google Scholar 

  7. Kumar Gupta, V., Jain, R., Varshney, S.: Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J. Colloid Interface Sci. 312, 292–296 (2007)

    Article  CAS  Google Scholar 

  8. Jain, R., Sharma, N., Bhargava, M.: electrochemical treatment of effluents from textile and dyeing industries. J Sci Ind Res. 63, 405–409 (2004)

    CAS  Google Scholar 

  9. role of dye structure: Araujo, C. K. C., Oliveira, G. R., Fernandes, N. S., Zanta, C. L. P. S., Souza Leal Castro, S., Silva, D. R., Martinez-Huitle, C. A., Electrochemical removal of synthetic textile dyes from aqueous solutions using Ti/Pt anode. Environ. Sci. Pollut. Res. 21, 9777–9784 (2014)

    Article  CAS  Google Scholar 

  10. Kabdasli, I., Ölmez, T., Tünay, O.: Factors affecting colour removal from reactive dye bath by ozonation. Water Sci. Technol. 45, 261–270 (2002)

    Article  CAS  PubMed  Google Scholar 

  11. Gharbani, P., Tabatabaii, S.M., Mehrizad, A.: Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Technol. 5, 495–500 (2008)

    Article  CAS  Google Scholar 

  12. Hamoud, H., Finqueneisel, G., Azambre, B.: Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system. J. Environ. Manage. 195, 195–207 (2017)

    Article  CAS  Google Scholar 

  13. Sadri Moghaddam, S., AlaviMoghaddam, M.R., Arami, M.: Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 175, 651–657 (2010)

    Article  CAS  PubMed  Google Scholar 

  14. Kasperchik, V. P., Yaskevich, A. L., Bil’dyukevich, A. V., Wastewater Treatment for Removal of Dyes by Coagulation and Membrane Processes, Pet. Chem. 52, 545–556 (2012).

  15. Liu, D.M., Dong, C., Zhong, J., Rena, S., Chen, Y., Qiu, T.: Facile preparation of chitosan modified magnetic kaolin by one-pot coprecipitation method for efficient removal of methyl orange. Carbohydr. Polym. 245, 116572 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Abo El Naga, A. O., Shaban, S. A., El Kady, F. Y.A., Metal organic framework-derived nitrogen-doped nanoporous carbon as an efficient adsorbent for methyl orange removal from aqueous solution, J Taiwan Inst Chem Eng. 93, 363–373 (2018).

  17. Hasan, M., Rashida, M., Hossain, M.M., Al Mesfer, M.K., Arshad, M., Danish, M., Lee, M., El Jery, A., Kumar, N.: Fabrication of polyaniline/activated carbon composite and its testing for methyl orange removal: Optimization, equilibrium, isotherm and kinetic study. Polym. Test. 77, 105909 (2019)

    Article  CAS  Google Scholar 

  18. Dastgerdi, Z.H., Meshkat, S.S., Esrafili, M.D.: Enhanced adsorptive removal of Indigo carmine dye performance by functionalized carbon nanotubes based adsorbents from aqueous solution: equilibrium, kinetic, and DFT study. J Nanostructure Chem. 9, 323–334 (2019)

    Article  CAS  Google Scholar 

  19. Mortazavi, K., Rajabi, H., Ansari, A., Ghaedi, M., Dashtian, K., Preparation of silver nanoparticle loaded on activated carbon and its application for removal of malachite green from aqueous solution, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. (2016)

  20. Koyuncu, H., Kul, A. R., Biosorption study for removal of methylene blue dye from aqueous solution using a novel activated carbon obtained from nonliving lichen (Pseudevernia furfuracea (L.) Zopf.), Surf. Interfaces. 19, 100527 (2020).

  21. Yusuf, M., Song, K., Geng, S., Fazhi, X.: Adsorptive removal of anionic dyes by graphene impregnated with MnO2 from aqueous solution. Colloids Surf A. 595, 124667 (2020)

    Article  CAS  Google Scholar 

  22. Kyzas, G.Z., Bikiaris, D.N., Mitropoulos, A.C.: Chitosan adsorbents for dye removal: a review. Polym. Int. 66, 1800–1811 (2017)

    Article  CAS  Google Scholar 

  23. Rahman, A., Urabe, T., Kishimoto, N.: Color removal of reactive procion dyes by clay adsorbents. Procedia Environ. Sci. 17, 270–278 (2013)

    Article  CAS  Google Scholar 

  24. Liu, J., Liu, A., Wang, W., Li, R., Zhang, W.X.: Feasibility of nanoscale zero-valent iron (nZVI) for enhanced biological treatment of organic dyes. Chemosphere 237, 124470 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Muzaffar, S., Tahir, H.: Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology. J. Mol. Liq. 252, 368–382 (2018)

    Article  CAS  Google Scholar 

  26. Khodaparast, Z., Pashaei, S., Mohammadi-Aghdam, S., Azimi, H.R., Hosseinzadeh, S.: Fabrication of Silver Nanoparticles with Antibacterial Property and Preparation of PANI/M/Al2O3/Ag Nanocomposites Adsorbent Using Biological Synthesis with Study on Chromium Removal from Aqueous Solutions. J Inorg OrganometPolym Mater. 30, 1078–1089 (2020)

    Article  CAS  Google Scholar 

  27. Marimuthu, S., Jayanthi Antonisamy, A., Malayandi, S., Rajendran, K., Tsai, P. C., Pugazhendhi, A., Ponnusamy, V. K., Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity, J. Photochem. Photobiol. B, Bio. 205, 111823 (2020).

  28. Feng Li, J., Liu, Y.C., Chokkalingam, M., et al.: Phytosynthesis of silver nanoparticles using rhizome extract of Alpinia officinarum and their photocatalytic removal of dye under UV and visible light irradiation. Optik. 208, 164521 (2020)

    Article  CAS  Google Scholar 

  29. Azeez, L., Lateef, A., Adebisi, S.A., Oyedeji, A.O.: Novel biosynthesized silver nanoparticles from cobweb as adsorbent for Rhodamine B: equilibrium isotherm, kinetic and thermodynamic studies. Appl. Water Sci. 8, 32 (2018)

    Article  CAS  Google Scholar 

  30. Al-Qahtani, K.M.: Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt. J. Aquat. Res. 43, 269–274 (2017)

    Article  Google Scholar 

  31. David, L., Moldovan, B.: Green Synthesis of Biogenic Silver Nanoparticles for Efficient Catalytic Removal of Harmful Organic Dyes. Nanomaterials. 10, 202 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  32. Chien, H.W., Kuo, C.J., Kao, L.H., Lin, G.Y., Chen, P.Y.: Polysaccharidic spent coffee grounds for silver nanoparticle immobilization as a green and highly efficient biocide. Int. J. Biol. Macromol. 140, 168–176 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. Ebrahimzadeh, M.A., Naghizadeh, A., Amiri, O., Shirzadi-Ahodashti, M., Mortazavi-Derazkola, S., Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application., Bioorg. Chem. 94, 103425 (2020).

  34. Pirtarighat, S., Ghannadnia, M., Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem. 9, 1–9 (2019)

    Article  CAS  Google Scholar 

  35. Kumar Satapathy, M., Banerjee, P., Das, P.: Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent. Appl. Nanosci. 5, 1–9 (2015)

    Article  CAS  Google Scholar 

  36. Rostamizadeh, E., Iranbakhsh, A., Majd, A., Arbabian, S., Mehregan, I., Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth‑promoting roles in Barley, J Nanostructure Chem. 10, 125–130 (2020).

  37. Sherin, L., Sohail, A., Amjad, U.S., Mustafa, M., Jabeen, R., Ul-Hamid, A.: Facile green synthesis of silver nanoparticles using Terminalia bellerica kernel extract for catalytic reduction of anthropogenic water pollutants. Colloids Interface Sci. Commun. 37, 100276 (2020)

    Article  CAS  Google Scholar 

  38. Mangindaan, D., Lin, G.U., Kuo, C.J., Chien, H.W.: Biosynthesis of silver nanoparticles as catalyst byspent coffee ground/recycled poly(ethyleneterephthalate) composites. Food Bioprod Process. 121, 193–201 (2020)

    Article  CAS  Google Scholar 

  39. Vijaya Kumar, P., Jelastin Kala, S.M., Prakash, K.S.: Green synthesis of gold nanoparticles using Croton Caudatus Geisel Leaf extract and their biological studies. Mater. Lett. 236, 19–22 (2019)

    Article  CAS  Google Scholar 

  40. Luque, P.A., Nava, O., Soto‑Robles, C.A., Vilchis‑Nestor, A.R., Garrafa‑Galvez, H.E., Castro‑Beltran, A., Effects of Daucus carota extract used in green synthesis of zinc oxide nanoparticles, J. Mater. Sci.: Mater. Electron. 29, 17638–17643 (2018).

  41. Mohammadalinejhad, S., Almasi, H., Esmaiili, M.: Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrumsalicaria extract: Morphological, thermal, antimicrobial and release properties. Mater. Sci. Eng. C. 105, 110115 (2019)

    Article  CAS  Google Scholar 

  42. Morteza-Semnani, K., Babanezhad, E., Essential Oil Composition of Chenopodium botrys L. from Iran, Essent. Oil-Bear. Plants. 10, 314–317 (2007).

  43. Mahboubi, M., Ghazian Bidgoli, F., Farzin, N., Chemical Composition and Antimicrobial Activity of Chenopodium botrys L. Essential Oil, J. Essent. Oil-Bear. Plants. 14, 498–503 (2011).

  44. Bojilov, D., Dagnon, S., Ivanov, I.: New insight into the flavonoid composition of Chenopodium botrys. Phytochem. Lett. 20, 316–321 (2017)

    Article  CAS  Google Scholar 

  45. Morteza-Semnani, K., A Review on Chenopodium botrys L.: traditional uses, chemical composition and biological activities, Pharm Biomed Res. 1, 1–9 (2015).

  46. Rajeshkumar, S., Bharath, L.V.: Mechanism of plant-mediated synthesis of silver nanoparticles e A review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 273, 219–227 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. Rohaizad, A., Shahabuddin, S., Mehmood Shahid, M., Maisarah Rashid, N., Adlan Mohd Hir, Z., Mukhlis Ramly, M., Awang, K., Wee Siong, C., Aspanut, Z., Green synthesis of silver nanoparticles from Catharanthus roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye, J. Environ. Chem. Eng. 8, 103955 (2020).

  48. Kumar, R., Ghoshal, G., Jain, A., Goyal, M.: Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol. 8, 4 (2017)

    Google Scholar 

  49. Botcha, S., Devi Prattipati, S.: Callus Extract Mediated Green Synthesis of Silver Nanoparticles, Their Characterization and Cytotoxicity Evaluation Against MDA-MB-231 and PC-3 Cells. BioNanoScience. 10, 11–22 (2020)

    Article  Google Scholar 

  50. Abidin Ali, Z., Yahya, R., Devi Sekaran, S., Puteh, R.: Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Adv. Mater. Sci. Eng. 2016, 1–6 (2016)

    Google Scholar 

  51. Orooji, Y., Mortazavi-Derazkola, S., Ghoreishi, S.M., Amiri, M., Salavati-Niasari, M.: MesopourousFe3O4@SiO2-hydroxyapatitenanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater. 400, 123140 (2020)

    Article  CAS  PubMed  Google Scholar 

  52. Ajitha, B., Kumar Reddy, Y.A., Sreedhara Reddy, P.: Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 121, 164–172 (2014)

    Article  CAS  PubMed  Google Scholar 

  53. Ebrahimzadeh, M.A., Naghizadeh, A., Mohammadi-Aghdam, S., Khojasteh, H., Ghoreishi, S.M., Mortazavi-Derazkola, S., Enhanced catalytic and antibacterial efficiency of biosynthesized Convolvulus fruticosus extract capped gold nanoparticles (CFE@AuNPs), J. Photochem. Photobiol. B, Biol. 209, 111949 (2020).

  54. Ilahi Siddiqui, S., Rathi, G., Chaudhry, S.A.: Acid washed black cumin seed powder preparation for adsorption of methylene blue dye from aqueous solution: Thermodynamic, kinetic and isotherm studies. J. Mol. Liq. 264, 275–284 (2018)

    Article  CAS  Google Scholar 

  55. Saeed, M., Munira, M., Nafees, M., Ahmad Shah, S. S., Ullah, H., A. Waseem, Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies, Microporous Mesoporous Mater. 291, 109697 (2020).

  56. Li, N., Mei Lei, X.: Adsorption of ponceau 4R from aqueous solutions by polyamidoamine–cyclodextrin crosslinked copolymer. J Incl Phenom Macrocycl Chem. 74, 167–176 (2012)

    Article  CAS  Google Scholar 

  57. Inyinbor, A.A., Adekola, F.A., Olatunji, G.A.: Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of RhodamineB dye onto Raphia hookerie fruit epicarp. Water Resour. Ind. 15, 14–27 (2016)

    Article  Google Scholar 

  58. Wu, Zh., Yuana, X., Zhong, H., Wang, H., Jiang, L., Zeng, G., Wang, H., Liu, Zh., Li, Y.: Highly efficient adsorption of Congo red in single and binary water with cationic dyes by reduced graphene oxide decorated NH2-MIL-68(Al). J. Mol. Liq. 247, 215–229 (2017)

    Article  CAS  Google Scholar 

  59. Salahuddin, N. A., EL-Daly, H. A., El Sharkawy, R. G., Nasr, B. T., Synthesis and efficacy of PPy/CS/GO nanocomposites for adsorption of ponceau 4R dye, Polymer. 146, 291–303 (2018).

  60. Dongsheng, Zh., Wenqiang, G., Guozhang, C., Shuai, L., Weizhou, J., Youzhi, L.: Removal of heavy metal lead (II) using nanoscale zero-valent iron with different preservation methods. Adv Powder Technol. 30, 581–589 (2019)

    Article  CAS  Google Scholar 

  61. Dehghani, M.H., Dehghan, A., Alidadi, H., Dolatabadi, M., Mehrabpour, M., Converti, A.: Removal of methylene blue dye from aqueous solutions by a new chitosan/zeolite composite from shrimp waste: Kinetic and equilibrium study. Korean J Chem Eng. 36, 1699–1707 (2017)

    Article  CAS  Google Scholar 

  62. Herrera, M.U., Futalan, C.M., Gapusan, R., Balela, D.L., M., : Removal of methyl orange dye and copper (II) ions from aqueous solution using polyaniline-coated kapok (Ceiba pentandra) fibers. Water Sci. Technol. 78, 1137–1147 (2018)

    Article  CAS  PubMed  Google Scholar 

  63. Singh, K.K., Senapati, K.K., Sarma, K.C.: Synthesis of superparamagnetic Fe3O4 Nanoparticles coated with green tea polyphenols and their use for removal of dye pollutant from aqueous solution. J. Environ. Chem. Eng. 5, 2214–2221 (2017)

    Article  CAS  Google Scholar 

  64. Anantha, M.S., Olivera, S., Hub, C., Jayanna, B.K., Reddy, N., Venkatesh, K., Muralidhara, H.B., Naidu, R.: Comparison of the photocatalytic, adsorption and electrochemical methods for the removal of cationic dyes from aqueous solutions. Environ. Technol. Innov. 17, 100612 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yari, A., Yari, M., Sedaghat, S. et al. Facile green preparation of nano-scale silver particles using Chenopodium botrys water extract for the removal of dyes from aqueous solution. J Nanostruct Chem 11, 423–435 (2021). https://doi.org/10.1007/s40097-020-00377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00377-3

Keywords

Navigation