Skip to main content

Advertisement

Log in

Recent progress on visible active nanostructured energy materials for water split generated hydrogen

  • Review
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Solar-driven water splitting is one amongst the fastest growing areas of research for hydrogen evolution. The technology employs application of nanostructured energy materials with featured charge-separation and light absorption characteristics. The high charge-carrier recombination and wide band-gap of energy materials are major material-related bottlenecks that restricted the large-scale implementation. Besides it, the co-catalyst, electron mediator and sacrificial electron donor (SED) were the other major components for further improving the H2 yield. A water splitting reactor with well-optimized photon and mass transfer properties is mandatory for studying hydrogen evolution at large scale. The present review compiles various strategies that were presented for reducing charge-carrier recombination and extending visible light absorption of materials, insights for loading earth-abundant co-catalysts on photocatalyst surface, recently developed reversible redox and non-noble metal-based solid-state electron mediators and advantage of applying organic contaminant and biomass-derived waste as SEDs. The discussions on several engineered reactor designs for the photocatalytic water splitting technology were also presented. A cost-effective way of designing a photocatalytic water splitting system with functionalized nanostructured energy materials, the earth-abundant co-catalysts, organic waste-based electron donors and efficient electron mediators for achieving improved hydrogen evolution rate is comprehensively discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Figure is adapted and reproduced with permission from Ref. [8])

Fig. 2

(Figure is adapted and reproduced with permission from Ref. [11])

Fig. 3

(Figure is adapted and reproduced with permission from Ref. [42])

Fig. 4

(Figure is adapted and reproduced with permission from Ref. [58])

Fig. 5

(Figure is adapted and reproduced with permission from Ref. [128])

Fig. 6

(Figure is adapted and reproduced with permission from Ref. [129])

Fig. 7

(Figure is adapted and reproduced with permission from Ref. [134])

Fig. 8

(Figure is adapted and reproduced with permission from Ref. [135])

Fig. 9

(Figure is adapted and reproduced with permission from Ref. [136])

Fig. 10

(Figure is adapted and reproduced with permission from Ref. [137])

Fig. 11

(Figure is adapted and reproduced with permission from Ref. [138])

Fig. 12

(Figure is adapted and reproduced with permission from Ref. [143])

Similar content being viewed by others

Abbreviations

SED:

Sacrificial electron donor

GHG:

Greenhouse gas

VB:

Valence band

CB:

Conduction band

AQE:

Apparent quantum efficiency

QE:

Quantum efficiency

STH:

Solar to hydrogen

NHE:

Normal hydrogen electrode

HEP:

Hydrogen evolution photocatalyst

OEP:

Oxygen evolution photocatalyst

SRP:

Standard redox potential

SHE:

Standard hydrogen electrode

RRM:

Reversible redox mediators

SSM:

Solid-state mediators

IR:

Infra-red

UV:

Ultraviolet

PAC:

Polycyclic aromatic compounds

PANI:

Polyaniline

TEOA:

Triethanolamine

PS:

Photosystem

CNT:

Carbon nanotube

FCNT:

Functionalized carbon nanotube

MWCNT:

Multiwalled carbon nanotube

QDs:

Quantum dots

CQDs:

Carbon quantum dots

TQD:

Titania quantum dots

GR:

Graphene

PVP:

Polyvinyl pyrollidone

LDH:

Layered double hydroxide

DETA:

Diethylenetriamine

PDA:

Polydopamine

NOM:

Natural organic matter

HA:

Humic acid

TOC:

Total organic carbon

EDTA:

Ethylenediaminetetraacetic acid

PDMS:

Polydimethylsiloxane

HMF:

5-(Hydroxymethyl) furfural

DFF:

2,5-Diformylfuran

CPC:

Compound parabolic concentrator

SPHPR:

Solar photocatalytic hydrogen production reactor

SUC:

Surface uniform concentrator

OP:

Oxidation photocatalyst

RP:

Reduction photocatalyst

MOF:

Metal organic framework

POP:

Porous organic polymer

CMP:

Conjugated microporous polymer

CTF:

Covalent triazine framework

COF:

Covalent organic framework

KJ/mol:

Kilojoule per mole

KJ/g:

Kilojoule per gram

μmol/h/g:

Micromoles per hour per gram

mmol/h/g:

Millimoles per hour per gram

W/m2 :

Watt per square meter

ml:

Milli litre

eV:

Electron volt

References

  1. Siripala, W.P.: Hydrogen energy and photoelectrolysis of water. Proc. Tech. Sess. 20, 67–73 (2004)

    Google Scholar 

  2. Staffell, I., Scamman, D., Abad, A.V., Balcombe, P., Dodds, P.E., Ekins, P., Shah, N., Ward, K.R.: The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463–491 (2019)

    CAS  Google Scholar 

  3. Nicoletti, G., Arcuri, N., Nicoletti, G., Bruno, R.: A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 89, 205–213 (2015)

    Google Scholar 

  4. Nikolaidis, P., Poullikkas, A.: A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 67, 597–611 (2017)

    CAS  Google Scholar 

  5. Wang, Z., Roberts, R.R., Naterer, G.F., Gabriel, K.S.: Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies. Int. J. Hydrog. Energy 37, 16287–16301 (2012)

    CAS  Google Scholar 

  6. Valiev, R.: Materials science: nanomaterial advantage. Nature 419, 887–889 (2002)

    CAS  PubMed  Google Scholar 

  7. Guo, D., Xie, G., Luo, J.: Mechanical properties of nanoparticles: basics and applications. J. Phys. D 47, 013001 (2014)

    Google Scholar 

  8. Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    CAS  Google Scholar 

  9. Chen, X., Shen, S., Guo, L., Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    CAS  PubMed  Google Scholar 

  10. Maeda, K.: Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 3, 1486–1503 (2013)

    CAS  Google Scholar 

  11. Li, H., Zhou, Y., Tu, W., Ye, J., Zou, Z.: State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015)

    CAS  Google Scholar 

  12. Li, H., Tu, W., Zhou, Y., Zou, Z.: Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv. Sci. 3, 1500389 (2016)

    Google Scholar 

  13. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    CAS  PubMed  Google Scholar 

  14. Chen, S., Takata, T., Domen, K.: Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017)

    CAS  Google Scholar 

  15. Guo, L., Chen, Y., Su, J., Liu, M., Liu, Y.: Obstacles of solar-powered photocatalytic water splitting for hydrogen production: a perspective from energy flow and mass flow. Energy 172, 1079–1086 (2019)

    CAS  Google Scholar 

  16. Fajrina, N., Tahir, M.: A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 44, 540–577 (2019)

    CAS  Google Scholar 

  17. Rani, A., Reddy, R., Sharma, U., Mukherjee, P., Mishra, P., Kuila, A., Sim, L.C., Saravanan, P.: A review on the progress of nanostructure materials for energy harnessing and environmental remediation. J. Nanostructure Chem. 8, 255–291 (2018)

    CAS  Google Scholar 

  18. Mishra, A., Mehta, A., Basu, S., Shetti, N.P., Reddy, K.R., Aminabhavi, T.M.: Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: a review. Carbon 149, 693–721 (2019)

    CAS  Google Scholar 

  19. Reddy, K.R., Reddy, C.V., Nadagouda, M.N., Shetti, N.P., Jaesool, S., Aminabhavi, T.M.: Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. J. Environ. Manag. 238, 25–40 (2019)

    CAS  Google Scholar 

  20. Zhang, K., Guo, L.: Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3, 1672–1690 (2013)

    CAS  Google Scholar 

  21. Yuan, Y.J., Chen, D., Yu, Z.T., Zou, Z.G.: Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. J. Mater. Chem. A 6, 11606–11630 (2018)

    CAS  Google Scholar 

  22. Ning, X., Lu, G.: Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 12, 1213–1223 (2020)

    CAS  PubMed  Google Scholar 

  23. Jo, W.K., Selvam, N.C.S.: Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem. Eng. J. 317, 913–924 (2017)

    CAS  Google Scholar 

  24. Li, K., Sun, M., Zhang, W.D.: Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution. Carbon 134, 134–144 (2018)

    CAS  Google Scholar 

  25. Bellamkonda, S., Shanmugam, R., Gangavarapu, R.R.: Extending the π-electron conjugation in 2D planar graphitic carbon nitride: efficient charge separation for overall water splitting. J. Mater. Chem. A 7, 3757–3771 (2019)

    CAS  Google Scholar 

  26. Li, Q., Xia, Y., Wei, K., Ding, X., Dong, S., Jiao, X., Chen, D.: Ferroelectric enhanced Z-scheme P-doped g-C3N4/PANI/BaTiO3 ternary heterojunction with boosted visible-light photocatalytic water splitting. N. J. Chem. 43, 6753–6764 (2019)

    CAS  Google Scholar 

  27. Huang, Z.F., Song, J., Wang, X., Pan, L., Li, K., Zhang, X., Wang, L., Zou, J.J.: Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 40, 308–316 (2017)

    CAS  Google Scholar 

  28. Yan, X., Xu, B., Yang, X., Wei, J., Yang, B., Zhao, L., Yang, G.: Through hydrogen spillover to fabricate novel 3DOM-HxWO3/Pt/CdS Z-scheme heterojunctions for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 256, 117812 (2019)

    CAS  Google Scholar 

  29. Takashima, T., Moriyama, N., Fujishiro, Y., Osaki, J., Takeuchi, S., Ohtani, B., Irie, H.: Visible-light-induced water splitting on a hierarchically constructed Z-scheme photocatalyst composed of zinc rhodium oxide and bismuth vanadate. J. Mater. Chem. A 7, 10372–10378 (2019)

    CAS  Google Scholar 

  30. Xing, C., Zhang, Y., Yan, W., Guo, L.: Band structure-controlled solid solution of Cd1-xZnxS photocatalyst for hydrogen production by water splitting. Int. J. Hydrog. Energy 31, 2018–2024 (2006)

    CAS  Google Scholar 

  31. Chen, Y., Guo, L.: Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals. J. Mater. Chem. 22, 7507–7514 (2012)

    CAS  Google Scholar 

  32. Preethi, V., Kanmani, S.: Photocatalytic hydrogen production using Fe2O3-based core shell nano particles with ZnS and CdS. Int. J. Hydrog. Energy 39, 1613–1622 (2014)

    CAS  Google Scholar 

  33. Lin, Y., Zhang, Q., Li, Y., Liu, Y., Xu, K., Huang, J., Zhou, X., Peng, F.: The evolution from a typical type-I CdS/ZnS to type-II and Z-scheme hybrid structure for efficient and stable hydrogen production under visible light. ACS Sustain. Chem. Eng. 8, 4537–4546 (2020)

    CAS  Google Scholar 

  34. Pan, C., Takata, T., Nakabayashi, M., Matsumoto, T., Shibata, N., Ikuhara, Y., Domen, K.: A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. 54, 2955–2959 (2015)

    CAS  Google Scholar 

  35. Yu, J., Qi, L., Jaroniec, M.: Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J. Phys. Chem. C 114, 13118–13125 (2010)

    CAS  Google Scholar 

  36. Gao, H., Cao, R., Xu, X., Zhang, S., Yongshun, H., Yang, H., Deng, X., Li, J.: Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B Environ. 245, 399–409 (2019)

    CAS  Google Scholar 

  37. Chen, W., Liu, M., Li, X., Mao, L.: Synthesis of 3D mesoporous g-C3N4 for efficient overall water splitting under a Z-scheme photocatalytic system. Appl. Surf. Sci. 512, 145782 (2020)

    CAS  Google Scholar 

  38. Sun, T., Liu, E., Liang, X., Hu, X., Fan, J.: Enhanced hydrogen evolution from water splitting using Fe-Ni codoped and Ag deposited anatase TiO2 synthesized by solvothermal method. Appl. Surf. Sci. 347, 696–705 (2015)

    CAS  Google Scholar 

  39. Bellamkonda, S., Thangavel, N., Hafeez, H.Y., Neppolian, B., Rao, G.R.: Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: an efficient non-noble metal photocatalyst for water splitting. Catal. Today 321, 120–127 (2019)

    Google Scholar 

  40. Li, Y., Peng, Y.K., Hu, L., Zheng, J., Prabhakaran, D., Wu, S., Puchtler, T.J., Li, M., Wong, K.Y., Tsang, S.C.E.: Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. Nat. Commun. 10, 4421 (2019)

    PubMed  PubMed Central  Google Scholar 

  41. Reddy, N.R., Bhargav, U., Kumari, M.M., Cheralathan, K.K., Shankar, M.V., Reddy, K.R., Saleh, T.A., Aminabhavi, T.M.: Highly efficient solar light-driven photocatalytic hydrogen production over Cu/FCNTs-titania quantum dots-based heterostructures. J. Environ. Manag. 254, 109747 (2020)

    CAS  Google Scholar 

  42. Kumar, D.P., Kumari, V.D., Karthik, M., Sathish, M., Shankar, M.V.: Shape dependence structural, optical and photocatalytic properties of TiO2 nanocrystals for enhanced hydrogen production via glycerol reforming. Sol. Energy Mater. Sol. Cells 163, 113–119 (2017)

    CAS  Google Scholar 

  43. Zhang, L., Hao, X., Jian, Q., Jin, Z.: Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution. J. Solid State Chem. 274, 286–294 (2019)

    CAS  Google Scholar 

  44. Kai, S., Xi, B., Wang, Y., Xiong, S.: One-pot synthesis of size-controllable core-shell CdS and derived CdS@ZnxCd1−xS structures for photocatalytic hydrogen production. Chem. Eur. J. 23, 16653–16659 (2017)

    CAS  PubMed  Google Scholar 

  45. Cui, H., Li, B., Li, Z., Li, X., Xu, S.: Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Appl. Surf. Sci. 455, 831–840 (2018)

    CAS  Google Scholar 

  46. Wang, C., Wang, L., Jin, J., Liu, J., Li, Y., Wu, M., Chen, L., Wang, B., Yang, X., Su, B.L.: Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl. Catal. B Environ. 188, 351–359 (2016)

    CAS  Google Scholar 

  47. Shi, J., Li, S., Wang, F., Gao, L., Li, Y., Zhang, X., Lu, J.: In situ topotactic formation of 2D/2D direct Z-scheme Cu2S/Zn0.67Cd0.33S in-plane intergrowth nanosheet heterojunctions for enhanced photocatalytic hydrogen production. Dalton Trans. 48, 3327–3337 (2019)

    CAS  PubMed  Google Scholar 

  48. Mei, F., Zhang, J., Dai, K., Zhu, G., Liang, C.: A: Z-scheme Bi2MoO6/CdSe-diethylenetriamine heterojunction for enhancing photocatalytic hydrogen production activity under visible light. Dalton Trans. 48, 1067–1074 (2019)

    CAS  PubMed  Google Scholar 

  49. Chen, J., Zhao, D., Diao, Z., Wang, M., Guo, L., Shen, S.: Bifunctional modification of graphitic carbon nitride with MgFe2O4 for enhanced photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 7, 18843–18848 (2015)

    CAS  PubMed  Google Scholar 

  50. Wang, H., Wang, B., Bian, Y., Dai, L.: Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation. ACS Appl. Mater. Interfaces 9, 21730–21737 (2017)

    CAS  PubMed  Google Scholar 

  51. Xia, P., Liu, M., Cheng, B., Yu, J., Zhang, L.: Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity. ACS Sustain. Chem. Eng. 6, 8945–8953 (2018)

    CAS  Google Scholar 

  52. Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.T., Zhang, J., Kang, Z.: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015)

    CAS  PubMed  Google Scholar 

  53. Ding, C., Shi, J., Wang, Z., Li, C.: Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS Catal. 7, 675–688 (2017)

    CAS  Google Scholar 

  54. Bai, S., Yin, W., Wang, L., Li, Z., Xiong, Y.: Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 6, 57446–57463 (2016)

    CAS  Google Scholar 

  55. Ma, B., Liu, Y., Li, J., Lin, K., Liu, W., Zhan, H.: Mo2N: an efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation. Int. J. Hydrog. Energy 41, 22009–22016 (2016)

    CAS  Google Scholar 

  56. Zong, X., Yan, H., Wu, G., Ma, G., Wen, F., Wang, L., Li, C.: Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 130, 7176–7177 (2008)

    CAS  PubMed  Google Scholar 

  57. Zhu, Y., Xu, Y., Hou, Y., Ding, Z., Wang, X.: Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. Int. J. Hydrog. Energy 39, 11873–11879 (2014)

    CAS  Google Scholar 

  58. Xu, L., Li, L., Ao, Y., Long, F., Guan, J.: Engineering highly efficient photocatalysts for hydrogen production by simply regulating the solubility of insoluble compound cocatalysts. Int. J. Hydrog. Energy 39, 11486–11493 (2014)

    CAS  Google Scholar 

  59. Ran, J., Zhang, J., Yu, J., Qiao, S.Z.: Enhanced visible-light photocatalytic H2 production by ZnxCd1−xS modified with earth-abundant nickel-based cocatalysts. Chemsuschem 7, 3426–3434 (2014)

    CAS  PubMed  Google Scholar 

  60. Sun, Z., Zhu, M., Fujitsuka, M., Wang, A., Shi, C., Majima, T.: Phase effect of NixPy hybridized with g-C3N4 for photocatalytic hydrogen generation. ACS Appl. Mater. Interfaces 9, 30583–30590 (2017)

    CAS  PubMed  Google Scholar 

  61. Guo, Q., Liang, F., Gao, X.Y., Gan, Q.C., Li, X.B., Li, J., Lin, Z.S., Tung, C.H., Wu, L.Z.: Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal. 8, 5890–5895 (2018)

    CAS  Google Scholar 

  62. Thaminimulla, C.T.K., Takata, T., Hara, M., Kondo, J.N., Domen, K.: Effect of chromium addition for photocatalytic overall water splitting on Ni–K2La2Ti3O10. J. Catal. 196, 362–365 (2000)

    CAS  Google Scholar 

  63. Ravi, P., Rao, V.N., Shankar, M.V., Sathish, M.: CuOCr2O3 core-shell structured co-catalysts on TiO2 for efficient photocatalytic water splitting using direct solar light. Int. J. Hydrog. Energy 43, 3976–3987 (2018)

    CAS  Google Scholar 

  64. Chang, K., Mei, Z., Wang, T., Kang, Q., Ouyang, S., Ye, J.: MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation. ACS Nano 8, 7078–7087 (2014)

    CAS  PubMed  Google Scholar 

  65. Jiao, Y., Huang, Q., Wang, J., He, Z., Li, Z.: A novel MoS2 quantum dots (QDs) decorated Z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl. Catal. B Environ. 247, 124–132 (2019)

    CAS  Google Scholar 

  66. Wang, M., Ju, P., Li, J., Zhao, Y., Han, X., Hao, Z.: Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustain. Chem. Eng. 5, 7878–7886 (2017)

    CAS  Google Scholar 

  67. Yue, Q., Wan, Y., Sun, Z., Wu, X., Yuan, Y., Du, P.: MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. J. Mater. Chem. A. 3, 16941–16947 (2015)

    CAS  Google Scholar 

  68. Ma, B., Wang, X., Lin, K., Li, J., Liu, Y., Zhan, H., Liu, W.: A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. Int. J. Hydrog. Energy 42, 18977–18984 (2017)

    CAS  Google Scholar 

  69. Chao, Y., Zhou, P., Li, N., Lai, J., Yang, Y., Zhang, Y., Tang, Y., Yang, W., Du, Y., Su, D., Tan, Y., Guo, S.: Ultrathin visible-light-driven Mo incorporating In2O3–ZnIn2Se4 Z-scheme nanosheet photocatalysts. Adv. Mater. 31, 1807226 (2019)

    Google Scholar 

  70. Dong, J., Shi, Y., Huang, C., Wu, Q., Zeng, T., Yao, W.: A new and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl. Catal. B Environ. 243, 27–35 (2019)

    CAS  Google Scholar 

  71. Zou, Y., Ma, D., Sun, D., Mao, S., He, C., Wang, Z., Ji, X., Shi, J.W.: Carbon nanosheet facilitated charge separation and transfer between molybdenum carbide and graphitic carbon nitride toward efficient photocatalytic H2 production. Appl. Surf. Sci. 473, 91–101 (2019)

    CAS  Google Scholar 

  72. He, Z., Fu, J., Cheng, B., Yu, J., Cao, S.: Cu2(OH)2CO3 clusters: novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Appl. Catal. B Environ. 205, 104–111 (2017)

    CAS  Google Scholar 

  73. Madhusudan, P., Wang, Y., Chandrashekar, B.N., Wang, W., Wang, J., Miao, J., Shi, R., Liang, Y., Mi, G., Cheng, C.: Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl. Catal. B Environ. 253, 379–390 (2019)

    CAS  Google Scholar 

  74. Wang, Y., Zhou, M., He, Y., Zhou, Z., Sun, Z.: In situ loading CuO quantum dots on TiO2 nanosheets as cocatalyst for improved photocatalytic water splitting. J. Alloys Compd. 813, 152184 (2020)

    CAS  Google Scholar 

  75. Rameshbabu, R., Ravi, P., Sathish, M.: Cauliflower-like CuS/ZnS nanocomposites decorated g-C3N4 nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting. Chem. Eng. J. 360, 1277–1286 (2019)

    CAS  Google Scholar 

  76. Qin, Z., Wang, M., Li, R., Chen, Y.: Novel Cu3P/g-C3N4 p-n heterojunction photocatalysts for solar hydrogen generation. Sci. China Mater. 61, 861–868 (2018)

    CAS  Google Scholar 

  77. He, K., Xie, J., Luo, X., Wen, J., Ma, S., Li, X., Fang, Y., Zhang, X.: Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)X cocatalysts. Chin. J. Catal. 38, 240–252 (2017)

    CAS  Google Scholar 

  78. Hu, T., Dai, K., Zhang, J., Zhu, G., Liang, C.: Noble-metal-free Ni2P as cocatalyst decorated rapid microwave solvothermal synthesis of inorganic-organic CdS-DETA hybrids for enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci. 481, 1385–1393 (2019)

    CAS  Google Scholar 

  79. Liu, M., Chen, Y., Su, J., Shi, J., Wang, X., Guo, L.: Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSX co-catalyst. Nat. Energy 1, 16151 (2016)

    CAS  Google Scholar 

  80. Zeng, D., Ong, W.J., Zheng, H., Wu, M., Chen, Y., Peng, D.L., Han, M.Y.: Ni12P5 nanoparticles embedded into porous g-C3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light. J. Mater. Chem. A 5, 16171–16178 (2017)

    CAS  Google Scholar 

  81. Ren, D., Liang, Z., Ng, Y.H., Zhang, P., Xiang, Q., Li, X.: Strongly coupled 2D–2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem. Eng. J. 390, 124496 (2020)

    CAS  Google Scholar 

  82. Tong, R., Sun, Z., Wang, X., Wang, S., Pan, H.: Ultrafine WC1–x nanocrystals: an efficient cocatalyst for the significant enhancement of photocatalytic hydrogen evolution on g-C3N4. J. Phys. Chem. C 123, 26136–26144 (2019)

    CAS  Google Scholar 

  83. Ren, C., Li, W., Gu, S., Liu, X., Li, X., Fan, H., Han, K., Ma, X.: ZnSe nanoparticles with bulk WC as cocatalyst: a novel and noble-metal-free heterojunction photocatalyst for enhancing photocatalytic hydrogen evolution under visible light irradiation. Appl. Mater. Today 20, 100731 (2020)

    Google Scholar 

  84. Chu, D., Zhang, C., Yang, P., Du, Y., Lu, C.: WS2 as an effective noble-metal free cocatalyst modified TiSi2 for enhanced photocatalytic hydrogen evolution under visible light irradiation. Catalysts 6, 136 (2016)

    Google Scholar 

  85. Xiang, Q., Cheng, F., Lang, D.: Hierarchical layered WS2/graphene-modified CdS nanorods for efficient photocatalytic hydrogen evolution. Chemsuschem 9, 996–1002 (2016)

    CAS  PubMed  Google Scholar 

  86. Jian, Q., Jin, Z., Wang, H., Zhang, Y., Wang, G.: Photoelectron directional transfer over a g-C3N4/CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution. Dalton Trans. 48, 4341–4352 (2019)

    CAS  PubMed  Google Scholar 

  87. Yu, Z., Meng, J., Xiao, J., Li, Y., Li, Y.: Cobalt sulfide quantum dots modified TiO2 nanoparticles for efficient photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 39, 15387–15393 (2014)

    CAS  Google Scholar 

  88. Yue, X., Yi, S., Wang, R., Zhang, Z., Qiu, S.: Cobalt phosphide modified titanium oxide nanophotocatalysts with significantly enhanced photocatalytic hydrogen evolution from water splitting. Small 13, 1603301 (2017)

    Google Scholar 

  89. Wang, J., Wang, P., Wang, C., Ao, Y.: In-situ synthesis of well dispersed CoP nanoparticles modified CdS nanorods composite with boosted performance for photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 43, 14934–14943 (2018)

    CAS  Google Scholar 

  90. Iwase, A., Ng, Y.H., Ishiguro, Y., Kudo, A., Amal, R.: Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011)

    CAS  PubMed  Google Scholar 

  91. Low, J., Jiang, C., Cheng, B., Wageh, S., Al-Ghamdi, A.A., Yu, J.: A review of direct Z-scheme photocatalysts. Small Methods 1, 1700080 (2017)

    Google Scholar 

  92. Sayama, K., Yoshida, R., Kusama, H., Okabe, K., Abe, Y., Arakawa, H.: Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys. Lett. 277, 387–391 (1997)

    CAS  Google Scholar 

  93. Tomita, O., Nitta, S., Matsuta, Y., Hosokawa, S., Higashi, M., Abe, R.: Improved photocatalytic water oxidation with Fe3+/Fe2+ redox on rectangular-shaped WO3 particles with specifically exposed crystal faces via hydrothermal synthesis. Chem. Lett. 46, 221–224 (2017)

    CAS  Google Scholar 

  94. Sasaki, Y., Iwase, A., Kato, H., Kudo, A.: The effect of co-catalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J. Catal. 259, 133–137 (2008)

    CAS  Google Scholar 

  95. Abe, R., Sayama, K., Domen, K., Arakawa, H.: A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I shuttle redox mediator. Chem. Phys. Lett. 344, 339–344 (2001)

    CAS  Google Scholar 

  96. Sayama, K., Mukasa, K., Abe, R., Abe, Y., Arakawa, H.: Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3−/I shuttle redox mediator under visible light irradiation. Chem. Commun. 23, 2416–2417 (2001)

    Google Scholar 

  97. Higashi, M., Abe, R., Teramura, K., Takata, T., Ohtani, B., Domen, K.: Two step water splitting into H2 and O2 under visible light by ATaO2N (A= Ca, Sr, Ba) and WO3 with IO3-/I- shuttle redox mediator. Chem. Phys. Lett. 452, 120–123 (2008)

    CAS  Google Scholar 

  98. Miseki, Y., Fujiyoshi, S., Gunji, T., Sayama, K.: Photocatalytic water splitting under visible light utilizing I3−/I and IO3−/I redox mediators by Z-scheme system using surface treated PtOx/WO3 as O2 evolution photocatalyst. Catal. Sci. Technol. 3, 1750–1756 (2013)

    CAS  Google Scholar 

  99. Sasaki, Y., Kato, H., Kudo, A.: [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 135, 5441–5449 (2013)

    CAS  PubMed  Google Scholar 

  100. Miseki, Y., Fujiyoshi, S., Gunji, T., Sayama, K.: Photocatalytic Z-scheme water splitting for independent H2/O2 production via a stepwise operation employing a vanadate redox mediator under visible light. J. Phys. Chem. C 121, 9691–9697 (2017)

    CAS  Google Scholar 

  101. Tsuji, K., Tomita, O., Higashi, M., Abe, R.: Manganese-substituted polyoxometalate as an effective shuttle redox mediator in Z-scheme water splitting under visible light. Chemsuschem 9, 2201–2208 (2016)

    CAS  PubMed  Google Scholar 

  102. Iwase, Y., Tomita, O., Naito, H., Higashi, M., Abe, R.: Molybdenum-substituted polyoxometalate as stable shuttle redox mediator for visible light driven Z-scheme water splitting system. J. Photochem. Photobiol. A Chem. 356, 347–354 (2018)

    CAS  Google Scholar 

  103. Zhao, W., Xie, L., Zhang, M., Ai, Z., Xi, H., Li, Y., Shi, Q., Chen, J.: Enhanced photocatalytic activity of all-solid-state g-C3N4/Au/P25 Z-scheme system for visible-light-driven H2 evolution. Int. J. Hydrog. Energy 41, 6277–6287 (2016)

    CAS  Google Scholar 

  104. Lu, J., Shang, C., Meng, Q., Lv, H., Chen, Z., Liao, H., Li, M., Zhang, Y., Jin, M., Yuan, M., Wang, X., Zhou, G.: In situ synthesis of all-solid-state Z-scheme BiOBr0.3I0.7/Ag/AgI photocatalysts with enhanced photocatalytic activity under visible light irradiation. Nanoscale Res. Lett. 13, 368 (2018)

    PubMed  PubMed Central  Google Scholar 

  105. Ng, B.J., Putri, L.K., Tan, L.L., Pasbakhsh, P., Chai, S.P.: All-solid-state Z-scheme photocatalyst with carbon nanotubes as an electron mediator for hydrogen evolution under simulated solar light. Chem. Eng. J. 316, 41–49 (2017)

    CAS  Google Scholar 

  106. Shezad, N., Maafa, I.M., Johari, K., Hafeez, A., Akhter, P., Shabir, M., Raza, A., Anjum, H., Hussain, M., Tahir, M.: Carbon nanotubes incorporated Z-scheme assembly of AgBr/TiO2 for photocatalytic hydrogen production under visible light irradiations. Nanomaterials 9, 1767 (2019)

    CAS  PubMed Central  Google Scholar 

  107. Yu, H., Shi, R., Zhao, Y., Waterhouse, G.I., Wu, L.Z., Tung, C.H., Zhang, T.: Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 28, 9454–9477 (2016)

    CAS  PubMed  Google Scholar 

  108. Guo, Y., Li, J.: MoS2 quantum dots: synthesis, properties and biological applications. Mater. Sci. Eng. C 109, 110511 (2019)

    Google Scholar 

  109. Chen, W., Yan, R.Q., Zhu, J.Q., Huang, G.B., Chen, Z.: Highly efficient visible-light-driven photocatalytic hydrogen evolution by all-solid-state Z-scheme CdS/QDs/ZnIn2S4 architectures with MoS2 quantum dots as solid-state electron mediator. Appl. Surf. Sci. 504, 144406 (2020)

    CAS  Google Scholar 

  110. Liu, E., Xu, C., Jin, C., Fan, J., Hu, X.: Carbon quantum dots bridged TiO2 and Cd0.5Zn0.5S film as solid-state Z-scheme photocatalyst with enhanced H2 evolution activity. J. Taiwan Inst. Chem. Eng. 97, 316–325 (2019)

    CAS  Google Scholar 

  111. Wu, X., Zhao, J., Wang, L., Han, M., Zhang, M., Wang, H., Huang, H., Liu, Y., Kang, Z.: Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B Environ. 206, 501–509 (2017)

    CAS  Google Scholar 

  112. Liu, C., Fu, Y., Zhao, J., Wang, H., Huang, H., Liu, Y., Dou, Y., Shao, M., Kang, Z.: All-solid-state Z-scheme system of NiO/CDs/BiVO4 for visible light-driven efficient overall water splitting. Chem. Eng. J. 358, 134–142 (2019)

    CAS  Google Scholar 

  113. Pellegrin, Y., Odobel, F.: Sacrificial electron donor reagents for solar fuel production. C. R. Chim. 20, 283–295 (2017)

    CAS  Google Scholar 

  114. Kim, J., Choi, W.: Hydrogen producing water treatment through solar photocatalysis. Energy Environ. Sci. 3, 1042–1045 (2010)

    CAS  Google Scholar 

  115. Huang, G., Xiao, Z., Zhen, W., Fan, Y., Zeng, C., Li, C., Liu, S., Wong, P.K.: Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: an energy recovering water purification technology. Water Res. 175, 115684 (2020)

    CAS  PubMed  Google Scholar 

  116. Battula, V.R., Jaryal, A., Kailasam, K.: Visible light-driven simultaneous H2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. J. Mater. Chem. A 7, 5643–5649 (2019)

    CAS  Google Scholar 

  117. Speltini, A., Sturini, M., Dondi, D., Annovazzi, E., Maraschi, F., Caratto, V., Profumo, A., Buttafava, A.: Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study. Photochem. Photobiol. Sci. 13, 1410–1419 (2014)

    CAS  PubMed  Google Scholar 

  118. Zhang, G., Ni, C., Huang, X., Welgamage, A., Lawton, L.A., Robertson, P.K., Irvine, J.T.: Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis. Chem. Commun. 52, 1673–1676 (2016)

    CAS  Google Scholar 

  119. Wakerley, D.W., Kuehnel, M.F., Orchard, K.L., Ly, K.H., Rosser, T.E., Reisner, E.: Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy 2, 17021 (2017)

    CAS  Google Scholar 

  120. Pichler, C.M., Uekert, T., Reisner, E.: Photoreforming of biomass in metal salt hydrate solutions. Chem. Commun. 56, 5743–5746 (2020)

    CAS  Google Scholar 

  121. Lo, C.C., Huang, C.W., Liao, C.H., Wu, J.C.: Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int. J. Hydrog. Energy 35, 1523–1529 (2010)

    CAS  Google Scholar 

  122. Reilly, K., Wilkinson, D.P., Taghipour, F.: Photocatalytic water splitting in a fluidized bed system: computational modeling and experimental studies. Appl. Energy 222, 423–436 (2018)

    CAS  Google Scholar 

  123. Fajrina, N., Tahir, M.: Monolithic Ag-Mt dispersed Z-scheme pCN-TiO2 heterojunction for dynamic photocatalytic H2 evolution using liquid and gas phase photoreactors. Int. J. Hydrog. Energy 45, 4355–4375 (2020)

    CAS  Google Scholar 

  124. Psaltis, D., Quake, S.R., Yang, C.: Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006)

    CAS  PubMed  Google Scholar 

  125. Erickson, D., Sinton, D., Psaltis, D.: Optofluidics for energy applications. Nat. Photonics. 5, 583–590 (2011)

    CAS  Google Scholar 

  126. Fainman, Y., Lee, L., Psaltis, D., Yang, C.: Optofluidics: fundamentals, devices, and applications. McGraw-Hill Inc, New York (2009)

    Google Scholar 

  127. Ahsan, S.S., Gumus, A., Erickson, D.: Redox mediated photocatalytic water-splitting in optofluidic microreactors. Lab Chip 13, 409–414 (2013)

    CAS  PubMed  Google Scholar 

  128. Li, L., Chen, R., Liao, Q., Zhu, X., Wang, G., Wang, D.: High surface area optofluidic microreactor for redox mediated photocatalytic water splitting. Int. J. Hydrog. Energy 39, 19270–19276 (2014)

    CAS  Google Scholar 

  129. Jing, D., Liu, H., Zhang, X., Zhao, L., Guo, L.: Photocatalytic hydrogen production under direct solar light in a CPC-based solar reactor: reactor design and preliminary results. Energy Convers. Manag. 50, 2919–2926 (2009)

    CAS  Google Scholar 

  130. Yang, Y., Wei, Q., Hou, J., Liu, H., Zhao, L.: Solar concentrator with uniform irradiance for particulate photocatalytic hydrogen production system. Int. J. Hydrog. Energy 41, 16040–16047 (2016)

    CAS  Google Scholar 

  131. Wei, Q., Yang, Y., Hou, J., Liu, H., Cao, F., Zhao, L.: Direct solar photocatalytic hydrogen generation with CPC photoreactors: system development. Sol. Energy 153, 215–223 (2017)

    CAS  Google Scholar 

  132. Wei, Q., Yang, Y., Liu, H., Hou, J., Liu, M., Cao, F., Zhao, L.: Experimental study on direct solar photocatalytic water splitting for hydrogen production using surface uniform concentrators. Int. J. Hydrog. Energy 43, 13745–13753 (2018)

    CAS  Google Scholar 

  133. Yang, Y., Wei, Q., Liu, H., Zhao, L.: Optimization of the radiation absorption for a scaled-up photocatalytic hydrogen production system. Sol. Energy 160, 168–177 (2018)

    CAS  Google Scholar 

  134. Baniasadi, E., Dincer, I., Naterer, G.F.: Radiative heat transfer and catalyst performance in a large-scale continuous flow photoreactor for hydrogen production. Chem. Eng. Sci. 84, 638–645 (2012)

    CAS  Google Scholar 

  135. Goto, Y., Hisatomi, T., Wang, Q., Higashi, T., Ishikiriyama, K., Maeda, T., Sakata, Y., Okunaka, S., Tokudome, H., Katayama, M., Akiyama, S., Nishiyama, H., Inoue, Y., Takewaki, T., Setoyama, T., Minegishi, T., Takata, T., Yamada, T., Domen, K.: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018)

    CAS  Google Scholar 

  136. Cao, F., Liu, H., Wei, Q., Zhao, L., Guo, L.: Experimental study of direct solar photocatalytic water splitting for hydrogen production under natural circulation conditions. Int. J. Hydrog. Energy 43, 13727–13737 (2018)

    CAS  Google Scholar 

  137. Xu, Q., Zhang, L., Cheng, B., Fan, J., Yu, J.: S-scheme heterojunction photocatalyst. Chem 6, 1543–1559 (2020)

    CAS  Google Scholar 

  138. Kuila, A., Surib, N.A., Mishra, N.S., Nawaz, A., Leong, K.H., Sim, L.C., Saravanan, P., Ibrahim, S.: Metal organic frameworks: a new generation coordination polymers for visible light photocatalysis. Chem. Sel. 2, 6163–6177 (2017)

    CAS  Google Scholar 

  139. Reddy, C.V., Reddy, K.R., Harish, V.V.N., Shim, J., Shankar, M.V., Shetti, N.P., Aminabhavi, T.M.: Metal-organic frameworks (MOFs)-based efficient heterogeneous photocatalysts: synthesis, properties and its applications in photocatalytic hydrogen generation, CO2 reduction and photodegradation of organic dyes. Int. J. Hydrog. Energy 45, 7656–7679 (2020)

    CAS  Google Scholar 

  140. Xu, C., Zhang, W., Tang, J., Pan, C., Yu, G.: Porous organic polymers: an emerged platform for photocatalytic water splitting. Front. Chem. 6, 592 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Liu, Y., Huang, D., Cheng, M., Liu, Z., Lai, C., Zhang, C., Zhou, C., Xiang, W., Qin, L., Shao, B., Liang, Q.: Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord. Chem. Rev. 409, 213220 (2020)

    CAS  Google Scholar 

  142. Liu, Y., Liu, Z., Huang, D., Cheng, M., Zeng, G., Lai, C., Zhang, C., Zhou, C., Wang, W., Jiang, D., Wang, H., Shao, B.: Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst. Coord. Chem. Rev. 388, 63–78 (2019)

    CAS  Google Scholar 

  143. Xiang, W., Zhang, Y., Lin, H., Liu, C.J.: Nanoparticle/metal–organic framework composites for catalytic applications: current status and perspective. Molecules 22, 2103 (2017)

    PubMed Central  Google Scholar 

  144. Pu, Y.C., Kibria, M.G., Mi, Z., Zhang, J.Z.: Ultrafast exciton dynamics in InGaN/GaN and Rh/Cr2O3 nanoparticle-decorated InGaN/GaN nanowires. J. Phys. Chem. Lett. 6, 2649–2656 (2015)

    CAS  PubMed  Google Scholar 

  145. Corp, K.L., Schlenker, C.W.: Ultrafast spectroscopy reveals electron-transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J. Am. Chem. Soc. 139, 7904–7912 (2017)

    CAS  PubMed  Google Scholar 

  146. Godin, R., Wang, Y., Zwijnenburg, M.A., Tang, J., Durrant, J.R.: Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216–5224 (2017)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The corresponding author is grateful to the Science and Engineering Research Board, Department of Science and Technology (DST-SERB) for the financial support received under IMPRINT with grant code IMP/2019/000286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pichiah Saravanan.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, A., Saravanan, P. & Jang, M. Recent progress on visible active nanostructured energy materials for water split generated hydrogen. J Nanostruct Chem 11, 69–92 (2021). https://doi.org/10.1007/s40097-020-00363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00363-9

Keywords

Navigation