Skip to main content
Log in

An algorithm for the Burgers’ equation using barycentric collocation method with a high-order exponential Lie-group scheme

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In order to approximate the solution of the one-dimensional Burgers’ equation, an accurate algorithm is developed on the combination of the barycentric collocation technique and a high-order group preserving method for space and time discretization, respectively. We have performed this algorithm on two different test examples for various values of viscosity parameters studied in the literature. The comparisons of the numerical results manifest the improved accuracy of the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

    Google Scholar 

  2. Burger, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Math. 1, 171–199 (1948)

    MathSciNet  Google Scholar 

  3. Cordero, A., Franques, A., Torregrosa, J.R.: Numerical solution of turbulence problems by solving Burgers’ equation. Algorithms 8, 224–233 (2015)

    MathSciNet  Google Scholar 

  4. Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V., Aswin, V.S.: A systematic literature review of Burgers’ equation with recent advances. Pramana 90, 1–21 (2018)

    Google Scholar 

  5. Seydaoğlu, M., Erdoğan, U., Öziş, T.: Numerical solution of Burgers’ equation with high order splitting methods. J. Comput. Appl. Math. 291, 410–421 (2016)

    MathSciNet  Google Scholar 

  6. Baltensperger, R., Berrut, J.P., Noël B.: Exponential convergence of a linear rational interpolant between transformed Chebyshev points. Math. Comput. 68, 1109–1120 (1999)

    MathSciNet  Google Scholar 

  7. Berrut, J.P., Baltensperger, R., Mittelmann, H.D.: Recent developments in Barycentric rational interpolation. Trends Appl. Constr. Approx. 151, 27–51 (2005)

    MathSciNet  Google Scholar 

  8. Berrut, J.P., Kliein, G.: Recent advances in linear Barycentric rational interpolation. J. Comput. Appl. Math. 259, 95–107 (2014)

    MathSciNet  Google Scholar 

  9. Kliein, G., Berrut, J.P.: Linear rational finite differences from derivatives of Barycentric rational interpolants. SIAM J. Numer. Anal. 50, 643–656 (2012)

    MathSciNet  Google Scholar 

  10. Ma, W., Zhang, B., Ma, H.: A meshless collocation approach with Barycentric rational interpolation for two-dimensional hyperbolic telegraph equation. Appl. Math. Comput. 279, 236–248 (2016)

    MathSciNet  Google Scholar 

  11. Liu, F., Wang, Y., Li, S.: Barycentric interpolation collocation method for solving the coupled viscous Burgers’ equations. Int. J. Comput. Math. 95, 2162–2173 (2018)

    MathSciNet  Google Scholar 

  12. Oruç, Ö.: Two meshless methods based on pseudo spectral delta-shaped basis functions and Barycentric rational interpolation for numerical solution of modified Burgers equation. Int. J. Comput. Math. 98, 461–479 (2021)

    MathSciNet  Google Scholar 

  13. Elgindy, K.T., Dahy, S.A.: High-order numerical solution of viscous Burgers’ equation using a Cole-Hopf Barycentric Gegenbauer integral pseudospectral method. Math. Methods Appl. Sci. 41, 6226–6251 (2018)

    MathSciNet  Google Scholar 

  14. Dahy, S.A., Elgindy, K.T.: High-order numerical solution of viscous Burgers’ equation using an extended Cole-Hopf Barycentric Gegenbauer integral Pseudospectral method. Int. J. Comput. Math. 99, 446–464 (2022)

    MathSciNet  Google Scholar 

  15. Kapoor, M., Joshi, V.: Numerical solution of coupled 1D Burgers’ equation by employing Barycentric Lagrange interpolation basis function based differential quadrature method. Int. J. Comput. Methods Eng. Sci. Mech. 23, 263–283 (2022)

    MathSciNet  Google Scholar 

  16. Mittal, R.C., Rohila, R.: A numerical study of the Burgers’ and Fisher’s equations using Barycentric interpolation method. Int. J. Numer. Methods Heat Fluid Flow (2022). https://doi.org/10.1108/HFF-03-2022-0166

    Article  Google Scholar 

  17. Zhao, Q., Wang, R., Wang, Z., Zhang, X.: Barycentric rational collocation method for Burgers’ equation. J. Math. (2022). https://doi.org/10.1155/2022/2177998

    Article  MathSciNet  Google Scholar 

  18. Li, J.: Linear Barycentric rational collocation method for solving non-linear partial differential equations. Int. J. Appl. Comput. Math 8, 1–19 (2022)

    MathSciNet  Google Scholar 

  19. Iserles, A., Quispel, G.R.W.: Why Geometric Numerical Integration? Discrete Mechanics, Geometric Integration and Lie-Butcher Series, Springer Proceedings in Mathematics and Statistics 267, pp. 805–882 (2018)

  20. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Berlin (2006)

    Google Scholar 

  21. Blanes, S., Casas, F.: Geometric Numerical Integration: A Concise Introduction to Geometric Numerical Integration. CRC Press, Boca Raton (2016)

    Google Scholar 

  22. Liu, C.S.: Cone of non-linear dynamical system and group preserving schemes. Int. J. Nonlinear Mech. 36, 1047–1068 (2001)

    MathSciNet  Google Scholar 

  23. Liu, C.S.: A method of Lie-symmetry \(GL(n, R)\) for solving non-linear dynamical systems. Int. J. Non-Linear Mech. 52, 85–95 (2013)

    Google Scholar 

  24. Lee, H.C., Liu, C.S.: The fourth-order group preserving methods for the integrations of ordinary differential equations. Comput. Model. Eng. Sci. 41, 1–26 (2009)

    MathSciNet  Google Scholar 

  25. Chen, Y.W.: High order implicit and explicit Lie-group schemes for solving backward heat conduction problems. Int. J. Heat Mass Transf. 101, 1016–1029 (2016)

    Google Scholar 

  26. Abbasbandy, S., Hajiketabi, M.: A simple, efficient and accurate new Lie-group shooting method for solving nonlinear boundary value problems. Int. J. Nonlinear Anal. Appl. 12, 761–781 (2021)

    Google Scholar 

  27. Abbasbandy, S., Hajiketabi, M.: A fictitious time Lie-group integrator for the Brinkman–Forchheimer momentum equation modeling flow of fully developed forced convection. Zh. Vychisl. Mat. Mat. Fiz. 62, 1563–1563 (2022)

    MathSciNet  Google Scholar 

  28. Polat, M., Oruç, Ö.: A combination of Lie group-based high order geometric integrator and delta-shaped basis functions for solving Korteweg-de Vries (KdV) equation. Int. J. Geom. Methods Modern Phys. 18, 2150216 (2021)

    MathSciNet  Google Scholar 

  29. Liu, C.S.: A group preserving scheme for Burgers’ equation with very large Reynolds number. CMES 12, 197–211 (2006)

    MathSciNet  Google Scholar 

  30. Liu, C.S.: An efficient backward group preserving scheme for the backward in time Burgers’ equation. CMES 12, 55–65 (2006)

    MathSciNet  Google Scholar 

  31. Seydaoğlu, M.: A meshless method for Burgers’ equation using multiquadric radial basis functions with a Lie-group integrator. Mathematics 7, 113 (2019)

    Google Scholar 

  32. Hajiketabi, M., Abbasbandy, S.: The combination of meshless method based on radial basis functions with a geometric numerical integration method for solving partial differential equations: application to the heat equation. Eng. Anal. Bound. Elem. 87, 36–46 (2018)

    MathSciNet  Google Scholar 

  33. Hajiketabi, M., Abbasbandy, S., Casas, F.: The Lie-group method based on radial basis functions for solving nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers’ equation in arbitrary domains. Appl. Math. Comput. 321, 223–243 (2018)

    MathSciNet  Google Scholar 

  34. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)

    MathSciNet  Google Scholar 

  35. Salzer, H.E.: Lagrangian interpolation at the Chebyshev points \(x_{n, v} \equiv cos(v\pi /n), v = 0(1)n\); some unnoted advantages. Comput. J. 15, 156–159 (1972)

    MathSciNet  Google Scholar 

  36. Trefethen, L.N.: Spectral Methods in MATLAB. Siam, Philadelphia (2000)

    Google Scholar 

  37. Cole, J.D.: On a quasi-linear parabolic equation in aerodynamics. Q. Appl. Math. 9, 225–236 (1951)

    MathSciNet  Google Scholar 

  38. Hopf, E.: The partial differential equation\(u_t+uu_x=\mu u_{xx}\). Commun. Pure Appl. Math. 3, 201–230 (1950)

    Google Scholar 

  39. Öziş, T., Aksan, E.N., Özdeş, A.: A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 139, 417–428 (2003)

    MathSciNet  Google Scholar 

  40. Kutluay, S., Bahadir, A.R., Özdeş, A.: Numerical solution of one-dimensional Burgers’ equation: explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 103, 251–261 (1999)

    MathSciNet  Google Scholar 

  41. Verma, A.K., Rawani, M.K., Agarwal, P.R.: A high-order weakly L-stable time integration scheme with an application to Burgers’ equation. Computation 8, 72 (2020)

    Google Scholar 

  42. Jiwari, R., Kumar, S., Mittal, R.C.: Meshfree algorithms based on radial basis functions for numerical simulation and to capture shocks behavior of Burgers’ type problems. Eng. Comput. 36, 1142–1168 (2019)

    Google Scholar 

  43. Hussain, M.: Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation. Comput. Appl. Math. 40, 1–49 (2021)

    MathSciNet  Google Scholar 

  44. Ganaie, I.A., Kukreja, V.K.: Numerical solution of Burgers’ equation by cubic Hermite collocation method. Appl. Math. Comput. 237, 571–581 (2014)

    MathSciNet  Google Scholar 

  45. Mittal, R.C., Rohila, R.: A study of one dimensional nonlinear diffusion equations by Bernstein polynomial based differential quadrature method. J. Math. Chem. 55, 673–695 (2017)

    MathSciNet  Google Scholar 

  46. Mukundan, V., Awasthi, A.: Efficient numerical techniques for Burgers’ equation. Appl. Math. Comput. 262, 282–297 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muaz Seydaoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seydaoğlu, M. An algorithm for the Burgers’ equation using barycentric collocation method with a high-order exponential Lie-group scheme. Math Sci 18, 229–238 (2024). https://doi.org/10.1007/s40096-022-00496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00496-8

Keywords

Navigation